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The Problem-size Effect in Mental Addition:
Developmental and Cross-national Trends
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Across two experiments, the magnitude of the problem-size effect in mental
addition was examined for kindergarten and elementary school children, as well
as adults, from mainland China and the United States. In North American
samples, the problem-size effect represents the finding that arithmetic problems
consisting of larger-valued numbers (e.g. 8+7) take longer to solve and are more
error prone than are problems consisting of smaller-valued numbers (e.g. 2+3).
This standard finding was found for the kindergarten, elementary school, and
adult samples from the United States. For the Chinese children, the problem size
effect was evident in kindergarten and at the beginning of first grade. However,
the effect had disappeared at the end of first grade and had reversed (i.e. larger-
valued addition problems were solved more quickly than smaller-valued
problems) by the end of third grade. However, the standard problem-size effect
“reappeared” for the Chinese adults. The results are interpreted in terms of
theoretical models of the nature of the memory representation for arithmetic facts
and in terms of the mechanisms that govern the development of these
representations.

In the nearly 25 years since Groen and Parkman’s (1972) seminal study of the
mental processes underlying the solution of simple addition problems,
cognitive arithmetic has emerged as a vibrant area of research. Scientists in
this area have mapped the cognitive processes and neurological correlates that
govern the mental solution of simple and complex arithmetic problems and
have extended these basic findings to more applied issues, such as
mathematical anxiety and mathematical disabilities (Ashcraft, 1992, 1995;
Ashcraft & Faust, 1994; Ashcraft, Yamashita, & Aram, 1992; Campbell &
Clark, 1988; Campbell & Graham, 1985; Dehaene & Cohen, 1991; Geary,
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1993; Geary, Widaman, & Little, 1986; LeFevre, Bisanz, & Mrkonjic, 1988;
McCloskey, 1992; Miller, Perlmutter, & Keating, 1984; Widaman, Geary,
Cormier, & Little, 1989). Yet, a complete explanation of the mech-anisms
underlying a very basic phenomenon in mental arithmetic has eluded
researchers since its first systematic study by Groen and Parkman (Ashcraft,
1995). This phenomenon, termed the problem-size effect, represents a sys-
tematic relationship between the magnitude of the numbers in simple
arithmetic problems (those with two single integers) and the amount of time
needed to solve the problems. Basically, simple arithmetic problems consisting
of smaller-valued numbers, such as 2+3, are solved more quickly, and often
more accurately, than are problems consisting of larger-valued numbers, such
as 9+7 (Ashcraft & Battaglia, 1978; Geary, Frensch, & Wiley, 1993; Miller et
al., 1984).

There have been two general classes of explanation for the problem-size
effect. The first focuses on the nature of the representation of numerical and
arithmetical information in semantic memory, and the second focuses on the
different types of strategies used to solve arithmetic problems that include
smaller- and larger-valued numbers (Ashcraft & Battaglia, 1978; Gallistel &
Gelman, 1992; LeFevre, Sadesky, & Bisanz, in press; Siegler, 1987; Zbrodoff,
1995). The focus of the present paper is on the implications that the problem-
size effect has for understanding the nature of the representation of arithmetic
facts in semantic memory, and the factors that govern the development of these
memory representations.

From the representational perspective, an early position was that the
problem-size effect directly mirrors the organisation of arithmetic facts in
semantic memory (Ashcraft & Battaglia, 1978; Geary et al., 1986; Miller et al.,
1984). A common feature of these models is that arithmetic facts are organised
as a two-dimensional “table-like” network, and the retrieval of these facts is
governed by the spread of activation through this network. Due to the nature
of the organisation of the network, activation spreads more quickly to facts
associated with smaller-valued problems than to facts associated with larger-
valued problems (Ashcraft & Battaglia, 1978). More recently, it has been
argued that arithmetic fact retrieval is governed by multiple codes, specifically
physical codes (i.e. arabic or verbal representations of the integers in the
problem) and a system of potentially inherent analogue representations of the
magnitudes associated with the integers 1 to 9 (Campbell, 1995; Dehaene &
Cohen, 1991; Gallistel & Gelman, 1992). In other words, people, and many
other animals, are born with a numerical system that can represent the
quantities 1 to 9 (Gallistel & Gelman, 1992), although experience will almost
certainly lead to the development of magnitude representations greater than 9
(Dehaene, 1992).

Within this numerical system, arithmetic fact retrieval is influenced by the
degree of association between the integers in the physical code and the
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associated answer (termed unitisation by Campbell, 1995), by associations
among related codes, and by the value of the underlying magnitude represen-
tations (Campbell, 1995; Gallistel & Gelman, 1992). For the magnitude
representations, the distinction between successive values becomes fuzzy as the
quantity increases (Moyer & Landauer, 1967). For instance, it is easier to
discriminate the quantities associated with 1 and 2 than with 8 and 9. From
this point of view, the less precise representation of the magnitudes associated
with larger values results in longer reaction times (RTs) and more errors for
arithmetic problems consisting of larger-valued numbers. This is so because the
fuzzy boundaries around larger magnitudes can result in greater interference
from adjacent magnitudes during fact retrieval. Moreover, it appears that the
number of potential interfering associations among the physical codes (e.g.
retrieving 12 for 3+4=?) increases with increases in the size of the integers in
the problem (Campbell, 1995). Thus, as the size of the problem addends
increases, the number of competing associations increases and the precision of
the underlying magnitude representations decreases. The net result is an
increase in RTs and error rates as the magnitude of the problem addends
increases.

With extensive exposure, however, it is possible that fact retrieval becomes
primarily or solely dependent on the physical-code associations between the
problem integers and the associated answer, with little direct access to the
analogue representations of magnitude, and little interference from competing
associations (Campbell, 1995; Dehaene, 1992). This scenario is consistent, in
some respects, with the model of arithmetic fact development proposed by
Siegler (1986, 1987, 1988). In this model, the problem-size effect reflects both
the different types of strategies used to solve smaller- and larger-valued
arithmetic problems and the nature of the memory representation for arithmetic
problems and the associated answers. During the initial acquisition of
arithmetic skills, children have not yet developed associations between
arithmetic problems and the correct answer, so they must rely on some form
of reconstructive process to solve the problem. For simple addition, these
reconstructive processes, which are sometimes called back-up strategies,
typically involve some form of counting, either on fingers or verbally, or
decomposition (Siegler, 1987; Siegler & Shrager, 1984). Decomposition
involves breaking the problem into smaller problems. For instance, to solve the
problem 8+5, the child might first retrieve the answer to 5+5, and then count,
11, 12, 13. The answer generated by means of decomposition or counting
becomes directly associated with the problem, and after many such associations
the problem/answer combination (i.e. the physical code for the problem/answer
unit) is represented in semantic memory (Campbell, 1995; Siegler & Jenkins,
1989).

One important feature of Siegler’s (1986, 1987, 1988) model is that the
problem-size effect essentially reflects differences in the duration and frequency
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with which different back-up strategies are used to solve smaller- and larger-
valued arithmetic problems, rather than reflecting the activational charac-
teristics of a two-dimensional network of stored arithmetic facts, or access to
any associated analogue magnitudes. If one has to count to solve an arithmetic
problem, the counting takes longer and is more error prone for larger-valued
(e.g. 8+7) as compared to smaller-valued (e.g. 2+3) problems. The problem-
size effect then results primarily from the averaging of RTs across strategies
(LeFevre et al., in press; Siegler, 1987). Once problem/answer associations
have been developed for all simple arithmetic problems and assuming equal
exposure to these problems, it follows from this model that retrieval speeds
should be uniform across all simple arithmetic problems, regardless of the
magnitude of the integers in the problem. This is so because the memory
representations are specific problem/answer associations, which, once formed
in memory, show the same representational and retrieval characteristics
regardless of the magnitude of the problem integers. Nevertheless, with
unequal exposure to all basic arithmetic problems, a problem-size effect might
still be found even when all answers are retrieved (i.e. no back-up strategies
are used). Here, the difference in retrieval speeds would reflect differences in
the strength of the association between different problems and the associated
answers. With extensive practice, however, the problem-size effect should
disappear (Siegler, 1988).

Thus, Siegler’s (1986) model essentially represents the physical-code feature
of the multiple-code models (Campbell, 1995; Dehaene, 1992). In other words,
for all of these models associations are formed between the problem integers
and the generated answers, but Siegler makes no assumptions about the access
of magnitude representations during arithmetic fact retrieval. An unresolved
issue then is whether magnitude representations are always accessed during the
retrieval of arithmetic facts, or whether arithmetic fact retrieval can be
supported solely by physical-code representations. If analogue magnitudes are
automatically accessed during the processing of arithmetic problems, then the
problem-size effect (for RTs and error rates) should be evident even after
extensive practice. If arithmetic fact retrieval is primarily associated with
physical-code representations, and if repeated exposure inhibits the potential
interfering effects of competing associations, then the problem-size effect
should disappear after extensive practice. Any such disappearance of the
problem-size effect would not necessarily disprove the multiple-code models.
However, such a finding would suggest that any access to analogue magnitudes
during fact retrieval and any influence of competing associations are less
important contributors to the problem-size effect than frequency of
exposure.

One method that might be used to determine whether the problem-size effect
can be eliminated with extensive practice is to examine the magnitude of the
problem-size effect in children from East Asian nations. Relative to American
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children, children in East Asian nations receive much more exposure to basic
arithmetic and, in fact, to nearly all other mathematical domains (Geary, 1994;
Stevenson et al., 1990a; Stevenson & Stigler, 1992). Moreover, the exposure of
East Asian children to basic arithmetic facts is likely to be more extensive, at
least in terms of repeated and long-term (i.e. spaced) exposure to these facts,
than is easily accomplished with experimental manipulations (Zbrodoff, 1995).

In Experiment 1, the problem-size effect for simple addition, when the
problems were solved by means of direct retrieval, is examined for kindergarten
and elementary-school (grades 1 through 3) children from mainland China and
the United States. The data described in this experiment are part of a larger
cross-national study of the influence of age, language, and schooling on the
arithmetical development of Chinese and American elementary-school children
(Geary, Bow-Thomas, Fan, & Siegler, in press). The present report focuses
exclusively on the problem-size effect, which is tangential to the goals of
the primary study and, therefore, was not addressed in the analyses presented
in Geary et al. (in press). In a second experiment, which is unique to this
article, the problem-size effect is examined for Chinese and American college
students.

EXPERIMENT 1

There are two features of this study that are of relevance to the issue of the
nature and development of the problem-size effect in mental addition. First,
Chinese children show nearly 100% retrieval by the end of first grade, and
100% retrieval by third grade. The high frequency of retrieval, combined with
very fast solution times and low error rates, suggest that the Chinese children
have had extensive exposure to the full range of simple addition problems over
an extended period of time (i.e. several years). Second, data were collected at
the beginning and at the end of the school year and across grade levels in both
countries. If the problem-size effect is primarily related to exposure to
arithmetic in school, then the magnitude of the effect should systematically
decrease for both the Chinese and American children across the school year
and across grade levels. As noted earlier, after extensive exposure to addition
combinations (i.e. for the Chinese children), Siegler’s model and a variation of
the multiple-code model that allows for a dissociation between physical codes
and magnitude representations predicts uniform access to stored facts, that is,
no problem-size effect. In contrast, a multiple-code representation that assumes
automatic access to magnitude representations, and that assumes that the
interfering effects of competing associations vary across problem size, predicts
that even with such extensive exposure to simple addition problems, solution
times should still be faster and less error prone for smaller-valued problems
relative to larger-valued problems.
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TABLE 1
Subject Characteristics

Age Gender

Grade M SD Male Female

United States
kindergarten 71 3.7 16 9
first 83 4.6 15 14
second 94 4.2 8 11
third 104 4.7 11 21

China
kindergarten 71 3.1 13 13
first 83 2.4 13 13
second 94 2.8 14 12
third 105 3.9 14 12

Note: Age is given in months.

Method

Subjects

The subjects included 105 elementary-school children (50 males, 55 females)
from Columbia, Missouri, and 104 elementary-school children (54 males, 50
females) from Hangzhou, China. Table 1 shows that the mean ages of the
same-grade American and Chinese children were comparable at all grade
levels. The difference in the number of boys and girls in the American sample
was not significant across grade levels, 2(3) = 5.4, p > 0.10, nor was the
national difference in the numbers of boys and girls, 2(1) = 0.4, p > 0.50. All
children were selected from the same elementary schools used in our original
study of the arithmetical abilities of Chinese and American children (Geary,
Fan, & Bow-Thomas, 1992). Here, an individual who was familiar with both
Hangzhou and Columbia selected comparable areas, in terms of relative
socioeconomic status, from which to choose subjects. In Hangzhou, subjects
were selected from a single elementary school that served a working-class
district. In Columbia, subjects were selected from two elementary schools that
served a working-class population. In this first study, the relative performance
of our Chinese and American children on a test of addition skills was
comparable to that of larger and more representative samples of Chinese and
American children for a similar test (Stevenson et al., 1990b). Thus, the
schools used in our original study and the current study would appear to be
adequately matched, in terms of providing a relatively unbiased assessment of
the arithmetic skills of urban American and urban Chinese children.
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Experimental Tasks

All children were administered a paper-and-pencil test of addition skills, a
digit span measure, and an addition strategy assessment. The stimuli were
identical for the English and Chinese versions of the tasks. The procedures
used for the translation and back-translation of task instructions were identical
to those described in Geary et al. (1992). Descriptions of the paper-and-pencil
addition test and the digit span task are provided in Geary et al. (in press).

Addition-Strategy Assessment. Three sets of stimuli were constructed for
the addition-strategy assessment task, two for the kindergarten children and
one for the older children. For the kindergarten children, the stimuli in the first
set consisted of 25 single-digit addition problems, those defined by the pairwise
combination of the integers 1 to 5, inclusive. For the second assessment, the
kindergarten children were also administered a second set of nine larger-valued
additions problems, that is, problems with sums greater than ten (e.g. 5+6,
7+8, 7+6). Strategies and RTs for these larger-valued problems are not
considered here, because the American children only retrieved, on average,
answers for 17% of these problems and committed many retrieval errors (47%).
As a result, there were not enough correct retrieval trials to provide a
meaningful estimate of the problem-size effect for this problem set. For the
older children, the stimuli consisted of 40 single-digit addition problems,
which ranged in difficulty from 2+3 to 9+8 (no tie problems, such as 3+3 or
4+4, were included).

The problems were presented, one at a time, at the centre of a cathode-ray
tube (CRT) controlled by a microcomputer. For each problem, a prompt
appeared at the centre of the CRT for 1000 msec, followed by a blank screen
for 1000 msec. The problem then appeared on the screen and remained until
the child responded. The child responded by speaking the answer into a voice-
operated relay that was interfaced with the microcomputer. A hardware
clocking mechanism ensured the collection of RTs with an accuracy of about
±1 msec. Equal emphasis was placed on speed and accuracy of responding.

Procedure

School begins during the first week of September in China and in the United
States. For the first measurement (Time 1), all data were collected in both
countries between November 4 and December 5. For the second measurement
(Time 2), all data were collected in both countries between April 20 and May
15. All of the Chinese subjects were assessed at both times of measurement,
and 103 of the 105 American subjects were assessed at both times of
measurement (two American subjects moved between the first and second
assessment). The Chinese children were individually tested in a quiet room in
the Engineering Psychology laboratory at Hangzhou University, whereas the
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American children were individually tested in a quiet room at their own school.
For the first time of measurement, all subjects were first administered the digit
span measure, then the paper-and-pencil addition test, and finally the addition-
strategy assessment in a single session that lasted less than 30 min. For the
second assessment, all subjects were administered the paper-and-pencil
addition test followed by the addition-strategy assessment.

For the strategy assessment task, the answer and strategy used to solve the
problem were recorded on a trial-by-trial basis by the experimenter and
classified as one of the following strategies; counting fingers, fingers, verbal
counting, retrieval, or decomposition.1 Strategy classifications were, for the
most part, based on the child’s behaviour during problem solving (Siegler &
Shrager, 1984). If the child was observed moving his or her fingers in sequence
during problem solving, then the strategy was classified as counting fingers. If
the child counted aloud or softly during problem solving, or if indications of
sub-auditory vocalisations were present (e.g. lip movements), then the strategy
was classified as verbal counting. If the child spoke the answer without
counting on fingers or counting verbally, the strategy was initially classified as
retrieval. After each trial, subjects were asked to describe how they arrived at
the answer. For trials initially classified as retrieval, if the child described a
stepwise process (e.g. 7+5 = 7+3 = 10, 10+2 = 12) then the strategy was
classified as decomposition. Comparisons of the child’s description and the
experimenter’s initial classification indicated agreement between the child and
the experimenter on more than 90% of the trials for each of the samples. For
those trials on which the child and experimenter disagreed, the strategy was
classified based on the child’s description. As described in the Results section,
RT patterns differed across the classified strategies, providing further evidence
for the validity of the strategy classifications.

Results

In the first section below, a brief overview of the strategy distributions and
analyses of retrieval frequencies and error rates as related to problem size is
presented. Detailed descriptions and analyses of the Chinese and American
children’s overall strategy choices are provided in Geary et al. (in press). The
second section presents analyses of the relation between retrieval RTs and
problem size, and the third, and final, section presents an assessment of the
magnitude of the problem-size effect for individual subjects.

1The fingers strategy involves looking at uplifted fingers, which represent the numbers to be added,
but not counting them to get the answer. Under these circumstances, the use of fingers appears to prompt
direct retrieval (Siegler & Shrager, 1984). The finger counting and verbal counting strategies were also
classified (based on observation and subject report) based on the procedure used in counting. These
procedures typically involved sum counting (i.e. counting both addends) or min counting (i.e. counting
the smaller addend) (see Geary et al., in press).
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Strategy choices

Overviews of the children’s strategy choices are presented in Tables 2–5 for
the kindergarten, first-, second-, and third-graders, respectively. Inspection of
the two right-hand columns of each of the tables indicates that for both the
Chinese and American children, mean RTs were lowest for retrieval and
highest for counting fingers, with intermediate values for decomposition and
verbal counting. This pattern is consistent with previous studies of children’s
strategy choices and provides support for the validity of the strategy
classifications (e.g. Geary & Brown, 1991; Siegler, 1987).

The analyses of the retrieval frequencies and retrieval errors are presented
separately for the kindergarten and older children, because they were
administered different sets of addition problems. Following these analyses,
correlations, computed across problems, between error frequencies and
variables that are sensitive to the problem-size effect are presented.

Kindergarten . For the kindergarten children, the analyses of retrieval
frequency and error rates were by means of 2 (Nation) × 2 (Time) mixed
analyses of variance (ANOVAs), with nation as a between-subjects factor and
time as a within-subjects factor. For retrieval frequency, the results revealed
a non-significant main effect of nation, F(1, 49) < 1, p > 0.25, but significant
time effects, F(1, 49) = 28.07, p < 0.0001, and Nation × Time effects,
F(1, 49) = 36.67, p < 0.0001. The significant cross-over interaction confirmed
that at Time 1 the American kindergarten children used retrieval more

TABLE 2
Characteristics of Addition Strategies in Kindergarten

Mean % Mean %
of Trials of Errors Mean RTa

Strategy China US China US China US

Time 1
counting fingers 11 29 8 13 9.3 7.6
fingers 11 0 9 — 5.8 —
verbal counting 47 12 5 13 3.2 4.6
retrieval 31 59 1 33 1.6 2.8

Time 2
counting fingers 0 32 — 13 — 8.9
fingers 0 3 — 3 — 5.4
verbal counting 16 11 2 7 3.7 5.3
retrieval 84 54 1 8 1.5 2.6

aMean reaction times in seconds; excludes error and spoiled trials as well as outliers.
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TABLE 3
Characteristics of Addition Strategies in First Grade

Mean % Mean %
of Trialsa of Errors Mean RTb

Strategy China US China US China US

Time 1
counting fingers 0 34 — 21 — 8.1
fingers 0 2 — 15 — —
verbal counting 18 42 1 11 2.9 4.9
retrieval 43 20 3 22 1.5 3.6
decomposition 36 1 6 0 3.6 —

Time 2
counting fingers 0 22 — 17 — 8.5
fingers 0 0 — — — —
verbal counting 3 46 0 7 2.4 4.5
retrieval 91 28 2 12 1.2 2.7
decomposition 6 4 1 14 2.2 4.9

aColumnar sums may not equal 100 due to rounding; also, for Time 1, for 2% of the trials the
Chinese children reported using a combination of two strategies, such as counting and retrieval.

bMean reaction in times in seconds; excludes error and spoiled trials as well as outliers. For the US
sample, Time 1 mean RTs are not reported for fingers and decomposition due to the small number of
trials for these strategies.

TABLE 4
Characteristics of Addition Strategies in Second Grade

Mean % Mean %
of Trials of Errors Mean RTa

Strategy China US China US China US

Time 1
counting fingers 0 35 — 10 — 5.7
fingers 0 0 — — — —
verbal counting 2 33 0 6 — 4.2
retrieval 94 31 5 4 1.1 2.6
decomposition 4 1 2 11 2.5 —

Time 2
counting fingers 0 25 — 12 — 5.7
fingers 0 0 — — — —
verbal counting 1 34 0 6 — 4.1
retrieval 98 41 4 4 1.0 2.1
decomposition 1 1 7 0 — —

aMean reaction times in seconds; excludes error and spoiled trials as well as outliers. For the US
sample, mean RTs are not reported for decomposition due to the small number of trials for this strategy;
for the same reason, Time 2 mean RTs are not reported for verbal counting or decomposition for the
Chinese sample.

72
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TABLE 5
Characteristics of Addition Strategies in Third Grade

Mean % Mean %
of Trials of Errors Mean RTa

Strategy China US China US China US

Time 1
counting fingers 0 23 — 6 — 4.7
fingers 0 0 — — — —
verbal counting 0 28 — 2 — 3.2
retrieval 100 45 5 0 0.8 2.0
decomposition 0 4 — 13 — 3.0

Time 2
counting fingers 0 15 — 7 — 4.8
fingers 0 0 — — — —
verbal counting 0 24 — 8 — 3.2
retrieval 100 56 3 2 0.8 1.9
decomposition 0 4 — 0 — —

aMean reaction times in seconds; excludes error and spoiled trials as well as outliers.

frequently than their Chinese peers, F(1, 49) = 11.85, p < 0.005, whereas at
Time 2 the Chinese kindergarten children used retrieval more frequently than
their American peers, F(1, 49) = 25.96, p < 0.0001.

The analysis of retrieval errors confirmed that the Chinese kindergarten
children committed fewer errors than the American kindergarten children,
F(1, 49) =  18.92, p < 0.0001, and that the overall frequency of retrieval errors
decreased from Time 1 to Time 2, F(1, 49) = 9.15, p < 0.005. Both of these
main effects were qualified, however, by a significant Nation × Time
interaction, F(1, 49) = 9.15, p < 0.005. The interaction reflected a significant
decrease in retrieval errors across time of measurement for the American
children, t(22) = 3.01, p < 0.01, and, due to very few retrieval errors (i.e. a
floor effect), no change across time of measurement for the Chinese children,
t(25) = 0.87, p > 0.25.

First through Third Grade. For the older children, the analyses of retrieval
frequency and error rates were by means of 3 (Grade) × 2 (Nation) × 2 (Time)
mixed ANOVAs, with grade and nation as between-subjects factors and time
as a within-subjects factor. For retrieval frequency, the results revealed that,
except for the Grade × Nation interaction, F(2, 149) = 2.62, p > 0.05, all of
the main effects and interactions were significant, ps < 0.005; F(2, 149) =
34.97, F(1, 149) = 278.61, F(1, 149) = 87.94, F(2, 149) = 25.25, F(1, 149) =
8.71, F(2, 149) = 36.45 for the grade, nation, time, Grade × Time, Nation ×
Time, and Grade × Nation × Time effects, respectively. Overall, retrieval
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frequency was higher for the Chinese children than the American children and
increased across grade level and time of measurement.

The three-way interaction reflected a significant increase in retrieval
frequency across time of measurement for the Chinese first-graders,
t(25) = 13.04, p < 0.0001, and no increase in retrieval frequency for the
American first-graders, t(26) = 1.37, p > 0.10, combined with the opposite
pattern for the third-graders. For the third-graders, the increase in retrieval
frequency was significant for the American children, t(31) = 3.05, p < 0.005,
but, due to 100% retrieval (i.e. a ceiling effect) at both times of measurement,
was not significant for the Chinese children, t(25) = 1.44, p > 0.10. Both the
Chinese, t(25) = 3.30, p < 0.005, and the American, t(17) = 2.07, p = 0.054,
second-graders showed more retrieval at Time 2 than at Time 1.

The analysis of error patterns indicated that overall error rates did not differ
across grade level, F(2, 149) < 1, or time of measurement, F(1, 149) = 2.25,
p > 0.10, but the Chinese children committed significantly fewer retrieval
errors than their American peers, F(1, 149) = 5.53, p < 0.02. The Grade ×
Time, F(2, 149) < 1, and Nation × Time, F(1, 149) < 1, interactions were not
significant, ps > 0.50, but the Grade × Nation, F(2, 149) = 10.42, and Grade
× Nation × Time, F(2, 149) = 5.19, interactions were, ps < 0.01. The three-
way interaction was the result of a significant decrease in retrieval errors from
Time 1 to Time 2 for the Chinese third-graders, t(25) = 3.71, p < 0.001, a
significant increase (due to a floor effect at Time 1) in retrieval errors from
Time 1 to Time 2 for the American third-graders, t(29) = 2.05, p < 0.05,
combined with no statistically significant changes in the frequency of retrieval
errors across time of measurement for the Chinese or American first- and
second-graders, ps > 0.25.

Retrieval Errors and Problem Size. Table 6 presents the correlations
between the frequency of errors committed (across subjects) for each problem
and variables that index the size of the problem, that is, variables that have
been shown to be sensitive to the problem-size effect in previous research (e.g.
Ashcraft & Battaglia, 1978; Campbell & Graham, 1985; Geary et al., 1986;
Groen & Parkman, 1972; Siegler & Shrager, 1984). Associative strength (AS)
is 1  p(correct retrieval), that is, 1 minus the probability that a child will
correctly retrieve the answer when the child is not allowed to use back-up
strategies (from Siegler, 1986). A positive correlation between AS and error
frequencies indicates agreement between the probability of incorrect retrieval,
from Siegler’s research, and the frequency of retrieval errors in the current
study. Min refers to the smaller of the two addends (e.g. 3, in 5+3), while max
refers to the larger of the two addends. The three remaining variables are
defined as follows: sum = a+b; product = a×b; sum2 = (a+b)2.

Consistent with previous studies of North American individuals (Campbell
& Graham, 1985; Miller et al., 1984; Siegler & Shrager, 1984), the top section
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of Table 6 shows that for the American children the frequency of retrieval
errors increased as the size of the problem increased. The only exception to this
pattern was for the Time 1 assessment of the second-graders, where all of the
correlations were negative, but non-significant. Inspection of the bottom
section of Table 6 indicates a different pattern for the Chinese children. Here,
there was no significant relationship between the indicators of problem size
and the frequency of retrieval errors, except for the Time 1 assessment of the
second-graders. For the Chinese second-graders, at Time 1, the frequency of
retrieval errors tended to decrease as problem size increased.

Error Patterns. Campbell (Campbell & Graham, 1985; Campbell, 1995)
has noted that retrieval errors are not random but, in addition to varying with
the size of the problem, reveal a pattern showing that such errors are typically
correct answers to related problems, presumably the result of multiple
associations between the addends and potential answers. For addition, the most
common class of retrieval error involves retrieving an answer that is ±1 or ±2
from the correct sum. Campbell (1995) referred to such errors as table-related
because they almost always involve retrieving an answer that is correct for

TABLE 6
Correlations between Frequency of Retrieval Errors and Problem Size Variables

Grade

Kindergarten First Second Third

Variable Time 1 Time 2 Time 1 Time 2 Time 1 Time 2 Time 1  Time 2

United States
AS 0.24 0.25 0.59* 0.40*** 0.19 0.49** — 0.23
min 0.33 0.32 0.75* 0.55* 0.07 0.59* — 0.18
max 0.41*** 0.34 0.37*** 0.11 0.28 0.16 — 0.27
sum 0.44*** 0.39**** 0.65* 0.39*** 0.20 0.44** — 0.27
product 0.39**** 0.37**** 0.70* 0.44** 0.17 0.50* — 0.24
sum2 0.39**** 0.36**** 0.65* 0.38*** 0.21 0.44** — 0.26

China
AS 0.07 0.17 0.11 0.05 0.29**** 0.15 0.11 0.18
min 0.04 0.06 0.14 0.01 0.40*** 0.15 0.03 0.07
max 0.27 0.27 0.05 0.01 0.27 0.23 0.04 0.14
sum 0.18 0.12 0.11 0.00 0.39*** 0.23 0.04 0.12
product 0.12 0.02 0.14 0.01 0.39*** 0.19 0.05 0.08
sum2 0.15 0.07 0.13 0.01 0.39*** 0.21 0.04 0.08

Note: AS = associative strength. Min refers to the smaller of the two addends and max refers to the
larger of the two addends.

*p < 0.001; **p < 0.01; ***p < 0.05; ****p < 0.07.
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another addition problem, that is, an answer that is correct for one or more
problems in the addition table, but incorrect for the presented problem (such
as 9+2=10). Two other common sources of retrieval errors for addition include
operation confusions (e.g. 9+2=18) and naming errors (Campbell, 1995; Miller
& Paredes, 1990). Naming errors involve restating one of the addends as the
answer (e.g. 9+2=9) or stating the augend as the tens value of the answer and
the addend as the units value of the answer (e.g. 9+2=92).

Retrieval errors for the first-, second-, and third-graders were classified into
the above three categories plus a fourth category, “other”, which included all
errors that were not classifiable into the first three categories; error patterns
were not examined for the kindergarten children, because of the low rate of
retrieval errors for the Chinese kindergarten children. Table 7 presents a
summary of the resulting categorisations. Consistent with the error patterns
found for adults (Campbell, 1995), the majority of the children’s retrieval
errors were table-related across all three grade levels and for both the American
and Chinese children. Operation (typically confusing multiplication with
addition) and naming errors were found for both the American and Chinese
children, although operation errors occurred at an earlier grade in the Chinese
sample than in the US sample, and naming errors were more common for the
Chinese children than for the American children.

Reaction Times

Two sets of analyses of retrieval RTs were conducted. The first set of analyses
used an estimate of the problem-size effect for individual subjects as the
dependent measure. The second set of analyses were based on correlations

TABLE 7
Percentages of Error Types

Grade

First Second Third

Type Time 1 Time 2 Time 1 Time 2 Time 1 Time 2

United States
table-related 67 61 100 78 — 71
operation 0 0 0 0 — 21
naming 5 0 0 0 — 0
other 27 39 0 22 — 7

China
table-related 67 61 80 82 83 77
operation 17 0 0 13 9 0
naming 8 17 2 5 8 8
other 8 22 18 0 0 15
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between mean retrieval RTs (averaged across subjects) and the problem-size
variables described above (e.g. AS, min, max, etc). All analyses focused on
correct retrieval trials, but excluded outliers. Outliers were defined as any RT
less than 500 msec, or any RT ±2.5 SDs from the mean of the correct retrieval
RTs for each subject. In all, 6.3% of the correct retrieval RTs were identified
and eliminated as outliers.

Kindergarten . In order to assess the problem-size effect for individual
subjects, the 25 addition problems administered to the kindergarten children
were divided into smaller- (n = 10) and larger- (n = 15) valued problems.
Smaller-valued problems were those with sums less than or equal to five, while
larger-valued problems had sums between six and ten. The problem-size effect
can be represented by the difference in mean RTs for smaller- and larger-valued
problems (Ashcraft, 1992). The use of smaller- and larger-valued sums seemed
to be a straightforward method to obtain estimates of the problem-size effect for
individual subjects and is empirically justified based on the correlations
between the sum variable and mean retrieval RTs described below (see
Table 9).

Mean RTs for smaller- and larger-valued problems across nation, grade, and
time of measurement are shown in Table 8 and, for the kindergarten children,
were analysed by means of a 2 (Nation) × 2 (Time) × 2 (Size) mixed ANOVA,
with nation as a between-subjects factor and time and size as within-subjects
factors. The results confirmed that the Chinese kindergarten children had faster
overall retrieval times than their American peers, F(1, 41) = 72.23, p < 0.0001,
and that smaller-valued problems were solved more quickly than larger-valued
problems, F(1, 41) = 41.76, p < 0.0001. A significant Nation × Size inter-
action, however, indicated that the overall problem-size effect was smaller for
the Chinese children in comparison to the American children, F(1, 41) = 7.06,
p < 0.02. The main effect for time and all interactions involving time were
non-significant, ps > 0.05; F(1, 41) = 2.91 for the time effect, F(1, 41) = 2.81
for the Time × Size effect, and F(1, 41) < 1 for the Nation × Time and the
Nation × Time × Size effects.

The difference between the means for smaller- and larger-valued problems
(i.e. the mean of the difference between smaller- and larger-valued problems
calculated for each subject) are displayed in Fig. 1; note that these values are
not identical to the difference between the means presented in Table 8 (which
would be based on a difference between group means, not individual esti-
mates). Values greater than zero indicate longer mean RTs for larger-valued
than smaller-valued problems, that is, a positive problem-size effect. In keeping
with previous studies of the relation between RTs and problem size (e.g.
Ashcraft & Battaglia, 1978), the left section of Fig. 1 shows positive and
significant, ts > 3.00, ps < 0.005, problem-size effects for both the American
and Chinese kindergarten children at both times of measurement.
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FIG. 1. Estimated problem-size effects across grade level, time of measurement, and nation. The error
bars represent standard errors.

First through Third Grade. In order to assess the problem-size effect in the
older children, the 40 addition problems administered to these children were
also divided into smaller- (n = 19) and larger- (n = 21) valued problems.
Smaller-valued problems were those with sums less than or equal to ten, while
larger-valued problems were those with sums greater than ten. Again, the
problem-size effect can be estimated by the difference in mean RTs comparing
smaller- and larger-valued problems; the mean retrieval RTs across the smaller-
and larger-valued problems are shown in Table 8.

For the older children, retrieval RTs were analysed by means of a 3 (Grade)
× 2 (Nation) × 2 (Time) × 2 (Size) mixed ANOVA, with nation and grade as
between-subjects factors and time and size as within-subjects factors. The
results confirmed that the Chinese children had faster overall RTs than the
American children, F(1, 113) = 340.44, p < 0.0001, and that overall RTs
decreased across grade level, F(2, 113) = 34.09, p < 0.0001, and time of
measurement, F(1, 113) = 111.88, p < 0.0001. A significant main effect for size
indicated that smaller-valued problems were solved more quickly than larger-
valued problems, F(1, 113) = 78.00, p < 0.0001. The significant main effects
were qualified, however, by significant Grade × Nation, F(2, 113) = 5.52,



80 GEARY

p < 0.01, Grade × Time, F(2, 113) = 16.67, p < 0.0001, Nation × Time,
F(1, 113) = 36.88, p < 0.0001, Grade × Nation × Time, F(2, 113) = 5.57,
p < 0.005, Grade × Size, F(2, 113) = 5.99, p < 0.005, Nation × Size,
F(1, 113) = 57.07, p < 0.0001, and Time × Size, F(1, 113) = 5.05, p < 0.05,
interactions. None of the remaining three-way interactions nor the four-way
interaction were significant, ps > 0.10.

The significant interactions reflect the disappearance and reversal of the
problem-size effect in the Chinese children, as shown in Fig. 1. For the
American children, the overall (across time of measurement) problem-size
effect was significant at all three grade levels, ps < 0.05. The problem-size
effect was also significant, ts > 2.00, ps < 0.05, at each time of measurement,
except for the Time 1 assessment of the first-graders, which, due to a large
standard error, was only marginally significant, t(7) = 1.93, p < 0.10. For the
Chinese children, in contrast, the problem-size effect was only significant at
Time 1 in first grade, t(22) = 6.30, p < 0.001, and at Time 2 in third grade,
t(25) = 2.60, p < 0.05. However, for the Chinese third-graders the problem-
size effect was reversed. In other words, larger-valued problems were solved
significantly faster than smaller-valued problems. For the Chinese children, the
problem-size effect was not significant at Time 2 in first grade, at either time
of measurement in second grade, or at Time 1 in third grade (ps > 0.10).

Retrieval RTs and Problem Size. Table 9 presents the correlations between
mean retrieval RTs and the problem-size variables. Inspection of the top section
of Table 9 shows that for the American children retrieval RTs were positively
correlated with all of the problem-size variables, although some of the
correlations do not differ significantly from zero. Thus, for the American
subjects, retrieval RTs increased as the size of the problem addends increased,
in keeping with the findings of many other studies (e.g. Ashcraft & Battaglia,
1978). The correlations presented in the bottom section of Table 9 show the
same pattern for the Chinese kindergarten children and the Chinese first-
graders at Time 1. However, there is no relation between mean retrieval RTs
and any of the problem-size variables for the Chinese first-graders at Time 2,
the Chinese second-graders, or the Chinese third-graders at Time 1. Moreover,
in keeping with the pattern shown in Fig. 1, for the Chinese third-graders, the
Time 2 retrieval RTs are negatively correlated with the problem-size variables.

The finding of a negative correlation between mean RTs and the problem-
size variables for the Time 2 measurement of the Chinese third-graders does
not appear to be due to a speed–accuracy trade-off, because error frequencies
and mean RTs were only marginally correlated, r(38) = 0.28, p = 0.08.
Moreover, the correlation was positive, indicating that error frequencies
increased with increases in RTs, not decreased as would be expected with a
speed–accuracy trade-off.2
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Assessment of Individual Problem Size Effects

In this section, the magnitude of the problem-size effect is examined for
individual subjects. Specifically, subjects were categorised based on the
magnitude of the problem-size effect for their retrieval RT data. The first
category (< 0) included subjects with negative problem-size effects, that is,
subjects who had shorter mean RTs for larger-valued problems than for
smaller-valued problems. The three remaining categories included subjects
with positive problem-size effects of various magnitudes (between 0 and 500
msec, between 501 and 1000 msec, and above 1000 msec), that is, subjects who
had shorter mean RTs to smaller-valued problems than for larger-valued
problems. The category “missing” refers to the number of subjects for whom
a problem-size effect could not be estimated, those who did not have correct
retrieval RTs for both smaller- and larger-valued problems. Table 10 shows the
distribution of subjects across the four problem-size categories.

2There were no significant negative correlations between mean RTs and error frequencies, ps > 0.05,
indicating that there were no speed–accuracy trade-offs for any of the groups.

TABLE 9
Correlations between Mean Retrieval RTs and Problem Size Variables

Grade

Kindergarten First Second Third

Variable Time 1 Time 2 Time 1 Time 2 Time 1 Time 2 Time 1 Time 2

United States
AS 0.66* 0.28 0.24 0.61* 0.16 0.31*** 0.26 0.45**
min 0.49*** 0.46*** 0.36*** 0.60* 0.24 0.23 0.19 0.40**
max 0.21 0.56** 0.25 0.43** 0.10 0.38*** 0.37*** 0.48**
sum 0.41**** 0.60** 0.37*** 0.61* 0.20 0.36*** 0.33*** 0.52*
product 0.46*** 0.55** 0.38*** 0.64* 0.18 0.32*** 0.30**** 0.48**
sum2 0.40**** 0.55** 0.35*** 0.62* 0.16 0.35*** 0.34*** 0.50*

China
AS 0.64** 0.12 0.51** 0.08 0.13 0.10 0.11 0.20
min 0.68* 0.26 0.42** 0.21 0.04 0.25 –0.03 0.28****
max 0.43*** 0.58** 0.43** 0.10 0.04 0.18 0.23 0.36***
sum 0.64** 0.49*** 0.50** 0.18 0.04 0.25 0.11 0.38***
product 0.70* 0.39**** 0.46** 0.17 0.07 0.22 0.09 0.29****
sum2 0.66* 0.43*** 0.47** 0.17 0.05 0.23 0.13 0.33***

Note: AS = associative strength. Min is the smaller of the two addends and max is the larger of the
two addends.

*p < 0.001; **p < 0.01; ***p < 0.05; ****p < 0.08.
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Chi-square tests indicated that the distribution of subjects across the four
categories differed significantly across the Chinese and American children at
all grade levels and both times of measurement, ps < 0.01, except for Time 1
in kindergarten, p > 0.10. More important, examination of the bottom section
of Table 10 indicates that in kindergarten and for the first assessment in first
grade, the majority of the Chinese children showed positive problem-size
effects. However, by the second assessment in first grade, at least half of the
Chinese children showed negative problem-size effects, and at Time 2 in third
grade the majority (69%) of the Chinese children showed negative problem-
size effects. Finally, the magnitude of the problem-size effect was not correlated
with error frequencies for any of the assessments ps > 0.15. In other words,
Chinese children with negative problem-size effects were no more error-prone
than their peers with positive problem-size effects, suggesting that the negative
problem-size effects were not due to speed–accuracy trade-offs.

Discussion

The relation between error frequencies, retrieval RTs, and problem size found
for the American children, except for the Time 1 assessment of the second-
graders, mirrored the standard pattern found in other samples of North

TABLE 10
Magnitude of the Problem Size Effect for Individual Subjects

Magnitude of the Problem Size Effecta

< 0 0–500 501–1000 > 1000 Missing

Grade Time 1 Time 2 Time 1 Time 2 Time 1 Time 2 Time 1 Time 2 Time 1 Time 2

United States
kindergarten 3 7 5 4 2 8 7 3 8 3
first 2 3 2 5 1 2 3 5 21 14
second 4 2 0 4 3 4 4 1 8 8
third 5 6 12 13 5 6 4 5 6 2

China
kindergarten 4 6 16 19 3 1 3 0 0 0
first 1 15 20 11 2 0 0 0 3 0
second 14 15 12 11 0 0 0 0 0 0
third 13 18 13 8 0 0 0 0 0 0

Note: The tabled values represent the number of subjects falling in each category. Missing refers
to subjects for whom a problem-size effect could not be calculated, that is, for subjects who did not have
correct retrieval RTs for both smaller- and larger-valued problems.

aIn milliseconds.
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American subjects (e.g. Ashcraft & Battaglia, 1978; Campbell, 1995; LeFevre
et al., in press; Miller et al., 1984). Specifically, in keeping with nearly all, if
not all, previous studies, error frequencies and retrieval RTs increased as the
size of the problem addends increased—the standard problem-size effect. Also
in keeping with previous studies, the majority of the American and Chinese
children’s retrieval errors were table-related (i.e. ±1 or ±2 from the correct
sum; Campbell, 1995). These error patterns are consistent with the argument
that the problem addends have multiple associations to a number of addition
facts, including the correct sum, and that these multiple associations can
interfere with fact retrieval (Campbell, 1995; Campbell & Clark, 1988; Siegler
& Shrager, 1984).

As noted earlier, Campbell (1995) has argued that the number of potentially
interfering associations increases as the size of the addends increases and,
therefore, is one factor contributing to the problem-size effect. However, unlike
the American children, the frequency of retrieval errors did not increase with
increases in problem size for the Chinese children. The dissociation between
error patterns and the relation between problem size and  error frequencies
suggests that, at least after extensive practice, competing associations do not
necessarily contribute to the problem-size effect, or do not necessarily produce
a positive problem-size effect (see Experiment 2). Moreover, the finding that
the magnitude of the problem-size effect for retrieval RTs systematically
disappeared from kindergarten to third grade, and was in fact reversed by the
end of third grade, for the Chinese children does not support the view that fact
retrieval is associated with the automatic access of the magnitude
representations associated with the problem addends. In other words, the
pattern shown in Experiment 1 suggests that extensive practice of basic
addition combinations might lead to a dissociation between physical-code
representations and any associated magnitude representations, such that fact
retrieval in such individuals appears to be primarily governed by the answer/
problem associations, which in turn appear to develop based on frequency of
exposure (Ashcraft, 1992; Siegler, 1986).

Two results suggest that problem/answer associations and any associated
problem-size effect are strongly influenced by the frequency of exposure. First,
in addition to showing strong national differences, the magnitude of the
problem-size effect decreased systematically across the school year, except for
the American third-graders who showed no change from Time 1 to Time 2.3

This pattern is consistent with the view that the problem-size effect is
influenced by schooling, as contrasted with more biological factors, such as
maturation (Kail, 1991).

3The American third-graders also showed little across-the-year improvement for performance on a
pencil-and-paper test of addition skills, suggesting little exposure to basic addition for these children
during third grade (Geary et al., in press).
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Second, a tally of the frequency with which simple addition problems (the
basic 100 problems, excluding 0+0) were presented in the Chinese first-,
second-, and third-graders’ workbooks (which are used to practise solving
arithmetic problems) indicated that the frequency of problem presentation and
the sum of the problem were significantly and positively correlated at all three
grade levels, r(97) = 0.55, 0.32, and 0.49, respectively, ps < 0.005.4 Moreover,
the cumulative frequency, across grades 1 to 3, of problem presentation was
strongly and positively correlated with the sum of the problem, r(97) = 0.68,
p < 0.0001. This pattern is the exact opposite of the pattern found in American
mathematics textbooks. For instance, Hamann and Ashcraft (1986) found that
the cumulative frequency of problem presentation (kindergarten to third grade)
was negatively correlated with the sum of the problem, r = 0.82. In other
words, larger-valued problems are presented more frequently than smaller-
valued problems in these Chinese workbooks, but are presented less frequently
in American textbooks.

The emphasis on solving larger-valued problems in the Chinese workbooks
might explain the reversal of the problem-size effect in third grade. In fact,
the cumulative frequency of problem presentation in the Chinese workbooks
was significantly correlated with mean retrieval RTs for the Chinese third-
graders, at Time 2, r(38) = 0.34, p < 0.05, but was not correlated with mean
retrieval RTs for the American third-graders (Time 2), r(38) = 0.04, p > 0.50.
In contrast, the cumulative frequency of problem presentation in
American mathematics textbooks was significantly correlated with the
American third-graders’ (Time 2) retrieval RTs, r(38) = 0.49, p < 0.005; the
value for the Chinese third-graders was 0.40, p < 0.05. The negative
correlations between the Chinese third-graders’ retrieval RTs and problem
frequency in the Chinese workbooks and American third-graders’ retrieval
RTs and problem frequency in American textbooks indicate that answers to
more frequently presented problems were retrieved more quickly than were
answers to less frequently presented problems, for both Chinese and American
children.

In contrast to the Chinese emphasis on solving larger-valued problem in first
to third grade, in Chinese kindergartens the emphasis is on solving addition
problems with sums up to and including ten, that is, the smaller-valued

4For each grade level, the tallies were taken from two workbooks, one from the first semester of
school and the other from the second semester. Tallies included all simple addition problems (e.g. 6+7)
and all unit-value combinations for more complex problems, such as 46+23 (6+3 was coded for this
problem). The correlations excluded the 0+0 combination because of the high frequency with which
problems such as 50+40 and 30+90, were presented in the second- and third-grade workbooks. The
emphasis on solving such problems distorted the relation between problem size and problem frequency.
In fact, the simple 0+0 problem was presented only once across the second- and third-grade workbooks.
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problems for the first- to third-graders. This emphasis in Chinese kindergartens
on learning the basic facts associated with smaller-valued problems might
explain the problem-size effect at the beginning of first grade, for the Chinese
children, as well as the emphasis on solving larger-valued problems in first
through third grade.

EXPERIMENT 2

The goal of Experiment 2 was to determine whether the problem-size effect
“reappears” in Chinese adults (i.e. college students). A test of this possibility
is important because it might be argued that the intense exposure to arithmetic
that Chinese children receive, combined with the emphasis on solving larger-
valued problems, biased the results of Experiment 1 by obscuring the potential
influence of access to magnitude representations and competing associations on
the problem-size effect (Campbell, 1995; Gallistel & Gelman, 1992). In fact,
it could be argued that if frequency of exposure were the only factor influencing
the problem-size effect, then the negative problem-size effect found for the
Chinese third-graders (at Time 2) should have been larger than it actually was,
given the strong emphasis on solving problems with larger-valued addends.
Thus, it is possible that frequency of exposure and magnitude representation/
interference effects have relatively independent and additive effects, which, for
the Chinese children, resulted in a net negative problem-size effect by the end
of third grade. If so, then without continual exposure to basic addition
problems, which is not part of the mathematics curriculum in Chinese
universities, the problem-size effect might reemerge in adulthood.

Method

The subjects included 35 undergraduates (23 males, 12 females) from the
University of Missouri at Columbia, and 26 undergraduates (13 males, 13
females) from Hangzhou University, Hangzhou, China. The American
subjects were recruited from psychology courses and received partial credit
for participating in the experiment. The Chinese subjects were recruited
through the Psychology Department at Hangzhou University, and they received
a small donation in their name to a general student fund for participating in
the experiment. The mean age of the Chinese and American subjects was 20
years.

Experimental Task and Procedure

Using the same strategy-assessment procedures, all subjects were admini-
stered the same set of addition problems that was administered to the older
children in Experiment 1.
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Results

For ease of presentation, the results are presented in three sections. The first
describes the strategy mix for the Chinese and American adults, the second
presents an examination of error patterns for the Chinese adults, and the third
presents analyses of the relation between problem size and retrieval RTs.

Strategy Choices

Table 11 shows that the Chinese adults retrieved answers to 100% of the
simple addition problems. In contrast, the American adults retrieved answers
to only 73% of the problems and had to rely on some form of back-up strategy
to solve the remaining problems. The national difference in the frequency of
retrieval was significant, F(1, 59) = 38.36, p < 0.0001, as was the difference
in the percentage of retrieval errors, F(1, 59) = 8.38, p < 0.01.

For the American sample, the frequency with which back-up strategies were
used for problem solving increased with increases in the sum of the problem,
r(38) = 0.79, p < 0.0001. In fact, for these subjects, back-up strategies were
used, on average, to solve 2.5 of the 19 smaller-valued addition problems, and
14 of the 21 larger-valued addition problems, F(1, 38) = 111.53, p < 0.0001.
In other words, the American college students used counting and
decomposition primarily to solve the larger-valued addition problems.

Error Patterns

Error patterns were not analysed for the American adults, due to their low
frequency. For the Chinese adults, the frequency of retrieval errors was
positively and significantly correlated with all of the problem-size variables
(i.e. AS, min, max, etc.), r(38)s = 0.33 to 0.48, ps < 0.05. In keeping with the
error patterns found in previous research, and for the Chinese and American

TABLE 11
Characteristics of Addition Strategies: Adults

Mean % Mean % Mean RTa

of Trials  of Errors

Strategy China US China US China US

verbal counting 0 9 — 11 — 1716
decomposition 0 17 — 6 — 1101
retrieval 100 73 4 1 605 739

Note: The columnar sum for the mean percentage of trials does not sum to 100 in the US sample,
due to rounding.

aReaction times in milliseconds; excludes error and outlier RTs.
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children in Experiment 1, 85% of the Chinese adults’ retrieval errors were
table-related. An additional 7.5% were naming errors, and the final 7.5% were
unclassified; there were no operation confusion errors.

Reaction Times

In keeping with the analyses for the older children in Experiment 1, the
problem-size effect was determined by examining RT patterns for smaller- and
larger-valued problems, which were defined in a manner identical to that
described for the older children. Again, the analyses only included correct
retrieval trials, after eliminating outliers (1.9% of correct retrieval trials).

The retrieval RTs were analysed by means of a 2 (Nation) × 2 (Size) mixed
ANOVA, with nation as a between-subjects factor and size as a within-subjects
factor. The results confirmed that the Chinese adults had faster overall RTs
than their American peers, F(1, 56) = 21.72, p < 0.0001, and that smaller-
valued problems were solved more quickly than larger-valued problems,
F(1, 56) = 32.15, p < 0.0001. These main effects were qualified, however, by
a significant Nation × Size interaction, F(1, 56) = 13.14, p < 0.001. Within-
nation analyses indicated that the problem-size effect was significant for both
the Chinese, t(25) = 2.12, p < 0.05, and American, t(31) = 5.73, p < 0.0001,
subjects, but was about 4.5 times larger in the American sample (mean = 110
msec) than in the Chinese sample (mean = 24 msec), as shown in Fig. 2.

Zero-order correlations indicated a significant and positive relation between
mean retrieval RTs and all of the problem-size variables for the American
sample, r(38)s = 0.38 to 0.55, ps < 0.05. For the Chinese sample, mean
retrieval RTs were significantly and positively correlated with the product,
r(38) = 0.35, p < 0.05, and sum2, r(38) = 0.34, p < 0.05, variables.5 In order
to obtain an additional estimate of the magnitude of the problem-size effect, the
product variable was used to represent retrieval RTs. The resulting b coef-
ficients of 1.02 and 2.33 for the Chinese and American samples, respectively,
were significantly different from 0, ps < 0.05, and significantly different from
each other, t(38) = 2.98, p < 0.05. Moreover, the b coefficient for the
American sample did not differ significantly, t(38) = 1.33, p > 0.10, from the
3.2 estimate (i.e. the b coefficient for the product variable) obtained for a
separate sample of American undergraduates who were administered the same
problem set (Geary & Wiley, 1991). However, this 3.2 value was significantly
higher than the 1.02 estimate obtained for the Chinese undergraduates, t(38)
= 4.97, p < 0.01.

5The frequency of retrieval errors and mean retrieval RTs were not significantly correlated for the
Chinese sample, r(38) = 0.26, p > 0.10, suggesting no speed–accuracy trade-off.
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FIG. 2. Estimated problem-size effects for the American and Chinese adults. The error bars
represent standard errors.

Discussion

In keeping with other studies of the mix of strategies used by North American
college students to solve simple addition problems, the American students in
this study used a combination of counting and decomposition to solve 27%
of the presented problems (Geary & Wiley, 1991; LeFevre et al., in press). The
finding that back-up strategies were used to solve, on average, 2 out of 3 (i.e.
14 of 21) of the larger-valued addition problems but only about 1 out of 9 of
the smaller-valued addition problems suggests that the American subjects have
had much more exposure to smaller-valued addition problems than to larger-
valued addition problems, consistent with differences in the frequency with
which smaller- and larger-valued problems are presented in American
mathematics textbooks (e.g. Ashcraft & Christy, 1995; Hamann & Ashcraft,
1986). Within this context, the problem-size effect for retrieval for the
American subjects is consistent with the argument that the problem-size effect
is influenced by the difference in the frequency with which these subjects have
been exposed to smaller- and larger-valued problems in school (Ashcraft, 1992;
Siegler, 1986, 1988). Indeed, retrieval RTs for the American adults were
significantly correlated with the cumulative frequency of problem presentation
in kindergarten to third-grade mathematics textbooks (Hamann & Ashcraft,
1986), r(38) = 0.51, p < 0.0001.

If a simple frequency of exposure were the only factor influencing the
problem-size effect, then it might be argued, based on the results of Experiment
1, that the Chinese adults should have had a negative problem-size effect.
However, a significant and positive problem-size effect was found for the
Chinese adults’ retrieval errors and RTs, although the magnitude of the effect
for the RTs was rather small (24 msec). Nevertheless, the Chinese adults
showed the standard, though attenuated, problem-size effect that is almost
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always found in samples of North American subjects (e.g. Ashcraft &
Battaglia, 1978; Campbell, 1995; Miller et al., 1984). The “reemergence” of
the positive problem-size effect in Chinese adults suggests that frequency of
exposure is not likely to be the only factor influencing the magnitude of the
effect. In fact, retrieval RTs for the Chinese adults were not significantly
correlated with frequency of problem exposure in the Chinese workbooks (from
Experiment 1), r(38) = 0.16, p > 0.25. Thus, it appears that other factors
related to the size of the addends in the problem, such as access to magnitude
representations and/or interference, contribute to the problem-size effect
(Campbell, 1995).

Indeed, based on the positive correlation between problem size and the
frequency of retrieval errors, combined with the finding that most of
these errors were table-related, suggests that the interfering effects of com-
peting associations probably contributed to the problem-size effect for the
Chinese adults (Campbell, 1995). In fact, when the frequency of retrieval errors
is partialled from the relationship between retrieval RTs and the product
variable, the magnitude of the problem-size effect is reduced (b = 0.81 vs. 1.02)
but is still marginally significant, t(38) = 1.69, p < 0.10. Thus, if the frequency
of retrieval errors provides an estimate of the interfering effects of multiple
associations, then an additional influence on the problem-size effect, such as
access to magnitude representations, is plausible.

GENERAL DISCUSSION

The results of these experiments suggest that the problem-size effect is
influenced by several factors, including frequency of exposure and factors more
directly associated with the size of the problem addends (Ashcraft, 1992;
Campbell, 1995; Dehaene, 1992; Siegler, 1986). For children, the magnitude
of the problem-size effect appears to be strongly influenced by the frequency of
exposure to arithmetic in school (Hamann & Ashcraft, 1986). The finding of
large national differences in the magnitude of the problem-size effect combined
with the finding that the magnitude of the effect tended to diminish from the
beginning to the end of the school year in both American and Chinese children
supports the schooling argument. Furthermore, for both American and Chinese
third-grade children (at Time 2), the speed of fact retrieval was directly related
to the cumulative frequency with which the problems were presented,
respectively, in American mathematics textbooks and Chinese workbooks.
Specifically, answers to frequently presented problems were retrieved more
quickly than answers to infrequently presented problems, regardless of whether
the frequently presented problems consisted of larger-  (Chinese workbooks) or
smaller- (American textbooks) valued addends.

Finally, for the Chinese children, the finding of a positive problem-size effect
at the beginning of kindergarten combined with the gradual disappearance and
eventual reversal of the effect by the end of third grade also implicate
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schooling, and presumably the frequency of problem exposure in school, as an
important influence on the magnitude of the problem-size effect. The reversal
of the problem-size effect by the end of third grade suggests that extensive
exposure to the basic addition combinations might lead to a dissociation
between problem/answer units in the physical code and any underlying
magnitude representations (Dehaene & Cohen, 1991). Alternatively, the
influences of exposure, access to magnitude representations, and interference
due to multiple associations might be independent. For the latter perspective,
the speed and accuracy of fact retrieval would be influenced by all three factors
(exposure, magnitude access, and interference), the effects of which would
summate (Campbell, 1995).

From this point of view, increases in frequency of exposure would result in
increases in the speed of fact retrieval (or unitization; Campbell, 1995), while
the influence of magnitude representations would remain relatively constant.
Exposure would influence the development of multiple and competing
associations to the problem addends, but high levels of exposure to the correct
problem/answer association would result in an eventual inhibition of competing
associations (Campbell, 1995; Siegler, 1986; Zbrodoff, 1995). If so, then the
reversed problem-size effect for the Chinese third-graders would reflect the net
result of all of these influences, with a heavy weighting on the frequency of
exposure. Indeed, if the magnitude of the problem-size effect were simply the
result of the frequency of exposure, then it seems likely that the magnitude of
the negative problem-size effect found in Chinese children at the end of third
grade would have been much larger than the observed 27-msec effect.

This multiple-influence model of the problem-size effect is consistent with
previous research (Campbell, 1995; LeFevre et al., 1995; Zbrodoff, 1995) and
would also seem to accommodate the “reappearance” of the problem-size effect,
for both RTs and error frequencies, in the Chinese adults. Although the
magnitude of the effect for adults, at least for RTs, was smaller than is typically
found in North American samples (Ashcraft & Battaglia, 1978; Campbell,
1995; Geary & Wiley, 1991; Miller et al., 1984), it was still the standard
positive problem-size effect. More important, the failure to find a relation
between the frequency of problem exposure in the Chinese workbooks and
adult retrieval RTs suggests that the problem-size effect for retrieval errors and
RTs for the Chinese adults is due largely to factors other than exposure. In
other words, the attenuated problem-size effect in the Chinese adults might
provide an estimate of the influence of access to magnitude representations
and/or competing associations on the problem-size effect, above and beyond the
influence of exposure.

If so, then the problem-size effect for the American adults in Experiment 2
was likely the result of all three factors, but the effect of exposure appears to
have been largely eliminated for the Chinese adults. Given this, and based on
the values presented in Figure 2, 78% {(110  24)/110} of the problem-size
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effect for the American adults might be attributed to exposure and the
remaining 22% (24/110) attributed to other factors, such as the effect of
competing associations. Alternatively, if the values of the regression
coefficients for the product variable are used as an estimate of the problem-size
effect, then 56% {(2.33  1.02)/2.33} of the problem-size effect in the American
adults might be attributed to exposure, and 44% to other factors.

In closing, the current studies suggest that the standard problem-size effect
in mental arithmetic (e.g. Ashcraft & Battaglia, 1978) is likely to be the result
of multiple factors, including differences in the frequency of exposure to
smaller- and larger-valued problems, the interfering effects of competing
associations, and, possibly, the influence of access to magnitude representations
(Ashcraft, 1992; Campbell, 1995; Gallistel & Gelman, 1992). The two latter
factors probably contribute to the problem-size effect because the number of
competing associations typically varies with problem size (Campbell, 1995), as
does the precision of the magnitude representations (Moyer & Landauer, 1967).
Regardless of these three influences, differences in the frequency of exposure
to smaller- and larger-valued problems appear to be the primary contributors
to the magnitude of the problem-size effect.
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