An Entropic Estimator for Structure Discovery in Hidden Markov Models

Presented by Derek Anderson
• Discovery and Segmentation of Activities in Video

• Other Brand references (where the real details are!)
 - An entropic estimator for structure discovery
 - TR-98-19 August 1998
 - Pattern Discovery via Entropy Minimization
 - Artificial Intelligence and Statistics, 1999
 - Structure Discovery in Conditional Probability Models via an Entropic Prior and Parameter Extinction
 - Neural Computation, Vol. 11, no. 5, pp. 1,155-1.182, 1999
SOME of the Problems with “Classical HMMs”

• Models tend to not be *interpretable*
• Model parameters
 - How many *mixtures, number of states*, and *transition probs*
• What constitutes a *good* model?
 - Individually the most likely w.r.t. observation data
 - Discriminative
 - Concise and compact representation
 - Interpretable model
 - All of the above?
• Number of training samples (not unique to HMM!)
 - *Too few* observations to estimate many of the parameters
 - HMMs can consist of A LOT of parameters and relatively few samples to estimate their values from
Some Approaches to Learning and Structure Discovery

• Heuristic generate-and-test search
• Evolutionary computing
• Discriminative training methods
• Clustering approaches
• I have seen some references about, but have not looked into, the following
 ◦ Minimum message length (MML) and minimum description length (MDL)
The Big Picture!

- Desire the simultaneous learning of model structure and parameters
- Brand advocates replacing the M-step in the Baum-Welch with estimators that minimize entropy
 - Maximize the information content of the model parameters
 - A desire for the smallest, least ambiguous, most specific model compatible with the data
Problems Surrounding the EM

- Expectation Maximization (EM) used for the ML solution (talking about Baum–Welch)
 - Brand says not valid for small data sets
 - Most of the parameters are only supported by small subsets of the data
 - Approach is riddled with local optima
 - Use entropy to discover the regularities and hidden structure while simultaneously addressing accidental properties (noise and sampling artifacts)
Entropic Estimator for Structure Discovery in HMMs

• Brand includes an entropic prior and provides a solution for the maximum a posteriori (MAP) estimator

• What is a MAP estimator?
 • Similar to ML estimator, but MAP employs an augmented optimization objective which incorporates a prior distribution over the quantity one wants to estimate (numerator in Bayes formulae)

\[
\theta^* = \arg \max_{\theta} \left[P(\theta|X) \propto P(X|\theta) e^{-H(\theta)} \right]
\]

EQ.1

\[
\exp \left[\sum_{i}^{N} \theta_i \log \theta_i \right] = e^{-H(\theta)}
\]
Relation of EQ.1 to EQ.2

- MAP estimate minimizes the entropy of
 - (a) Data’s expected sufficient statistics
 - Sufficiency is the property possessed by a statistic, with respect to a parameter, "when no other statistic which can be calculated from the same sample provides any additional information as to the value of the parameter" (really the “minimum” definition)
 - In the EM, the E-step reduces to computing expected sufficient statistics for the parameters (i.e. expected transition and emission counts for an HMM)
 - In the M-step, parameters are updated using normalized sufficient statistics
 - (b) Relative entropy between model and data
 - (c) Measure of the model itself

$$\theta^* = \arg \min_{\theta} \left[H(\omega) + D(\omega || \theta) + H(\theta) \right]$$ \hspace{1cm} \text{EQ.2}

Typically \(w \) represents the "true" distribution of data, observations, or a precise calculated theoretical distribution. The measure \(\theta \) typically represents a theory, a model, a description or an approximation of \(w \).
The Calculation

\[\theta^* = \arg \min_{\theta} \left[H(\omega) + D(\omega \| \theta) + H(\theta) \right] \]

(a) \[-\sum_i \omega_i \log \omega_i + \sum_i \omega_i \log \frac{\omega_i}{\theta_i} - \sum_i \theta_i \log \theta_i \]
MAP Estimator for Gaussian

- State with a single Gaussian (no state mixture model!)
 - Entropy favors minimum volume covariance's
 - He assumes a zero mean
 - Estimator is
 \[
 \hat{K} = \frac{\sum_{i=1}^{N} x_i x_i^T}{N + Z}
 \]
 - \(Z \) is a negative temperature term
 - \(Z \) varies the strength of the prior under the control of a temperature variable \(T = 1 - Z \)

- \[\Sigma_{\ell}^{\text{new}} = \frac{\sum_{i=1}^{N} P(\ell|x_i, \Theta^g)(x_i - \mu_{\ell}^{\text{new}})(x_i - \mu_{\ell}^{\text{new}})^T}{\sum_{i=1}^{N} P(\ell|x_i, \Theta^g)} \]
 - for MM and HMM

- \[\Sigma_{i\ell} = \frac{\sum_{t=1}^{T} \gamma_{i\ell}(t)(o_t - \mu_{i\ell})(o_t - \mu_{i\ell})^T}{\sum_{t=1}^{T} \gamma_{i\ell}(t)} \]

- Drive to \(Z = 1 \) over training
- Gives deterministic annealing within EM

\[
P(\theta|X, T, T_0) \overset{\text{def}}{=} P(X|\theta)P(\theta)^{T_0-T}\delta(T)
\]

\[\hat{\theta} = \arg\max_{\theta} [\log P(X|\theta) - ZH(\theta)] \]
MAP Estimator for the Transition Probabilities

• Entropic prior favors near-deterministic odds
 ♦ Around chance (0.5), no information
 ♦ At the extremes {0, 1}, very informative

• Estimator is (derivation in the Pattern Discovery Via Entropy Minimization paper)

\[
\hat{\lambda} = \frac{1}{N} \sum_{i}^{N} \frac{\omega_i}{\theta_i} + Z \log \theta_i + Z,
\]

\[
\hat{\theta}_i = \frac{-\omega_i/Z}{W(-\omega_i e^{1-\lambda/Z}/Z)},
\]

\[W \text{ is the Lambert inverse function satisfying } W(x)e^{W(x)} = x\]
Symbol Recognition

a. conventional
b. entropic

initialization
final model
conventionally trained
Office Activity

- Ellipse fitting the single largest connected set of active pixels in the image
- Uses two consecutive frames
- The observation vector consisted of
 - Mean x
 - Mean y
 - Change in x
 - Change in y
 - Mass
 - Change in mass
 - Elongation
 - Eccentricity
Learned Model
Conclusions

• Interesting approach to learning structure and parameters simultaneously
• Still has the same limitations as most HMMs
 ◆ Most likely classifier
 ▪ Pick 1 of K!
 ▪ What about “I do not know”?
• Brand also extend this work to
 ◆ Multi-observation-mixture+counter
 ◆ Good for situations in which one wants to simultaneously monitor multiple processes within a single hidden variable structure