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Summary We provide novel, high-order accurate methods for nonparametric in-
ference on quantile differences between two populations in both unconditional and
conditional settings. These quantile differences corresponds to (conditional) quantile
treatment effects under (conditional) independence of a binary treatment and poten-
tial outcomes. Our methods use the probability integral transform and a Dirichlet
(rather than Gaussian) reference distribution to pick appropriate L-statistics as con-
fidence interval endpoints, achieving high-order accuracy. Using a similar approach,
we also propose confidence intervals/sets for 1) vectors of quantiles, 2) interquantile
ranges, and 3) differences of linear combinations of quantiles. In the conditional setting,
when smoothing over continuous covariates, optimal bandwidth and coverage proba-
bility rates are derived for all methods. Simulations show the new confidence intervals
to have a favourable combination of robust accuracy and short length compared with
existing approaches. Detailed steps for confidence interval construction are provided
in Supplemental Appendix E, and code for all methods, simulations, and empirical
examples is provided.

Keywords: Dirichlet distribution, Fractional order statistics, High-order accuracy,
Inequality, Quantile treatment effect.

1. INTRODUCTION

We consider inference on various quantile-based objects of interest used in empirical
economics. The τ -quantile difference (τ -QD) is the difference between the τ -quantiles of
two population distributions. Under certain asssumptions, the τ -QD corresponds to the τ -
quantile treatment effect, i.e., the difference between the respective τ -quantiles of treated
and untreated potential outcome distributions (Doksum, 1974; Lehmann, 1975). These
quantile treatment effects capture heterogeneity and distributional impacts unseen in the
average treatment effect. For example, such assumptions are satisfied in experimental
settings like Gneezy and List (2006).1 Similarly, the conditional (on covariates) τ -QD
corresponds to the conditional τ -quantile treatment effect under certain assumptions
(e.g., unconfoundedness), potentially revealing additional heterogeneity across covariate
values. The (conditional) QDs also provide valuable summaries of income differences
between two groups (conditional on covariates like education), for example.

Interquantile ranges (IQRs) are empirically valuable as robust, versatile measures of

1We revisit their data in Supplemental Appendix H; see also Björkman and Svensson (2009) and
Charness and Gneezy (2009), among others.
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spread and have been used to document trends in income inequality.2 For example,
Angrist, Chernozhukov, and Fernández-Val (2006, Table 1, p. 554) use three measures of
U.S. wage inequality: the 90–10 IQR, i.e., the 0.9-quantile minus the 0.1-quantile (90th
percentile minus 10th percentile); the 90–50 IQR; and the 50–10 IQR.3 These show
“inequality increasing in both the upper and lower halves of the wage distribution from
1980 to 1990, but in the top half only from 1990 to 2000” (p. 554). Similarly, Kopczuk,
Saez, and Song (2010, Figure II, p. 106) examine trends over the period 1937–2004 in
U.S. inequality using the 80–50 and 50–20 IQRs of log earnings.4 Examining conditional
(on education) IQRs, Angrist et al. (2006) note, “The increase in conditional inequality
since 1990 has been much larger for college graduates than for high school graduates”
(p. 554). Describing the 50–20 IQR conditional on sex, Kopczuk et al. (2010) write, “The
series for men only is quite different. . . with an absolute minimum in 1969 followed by
a sharp increase up to 1983. . . [versus] a secular and steady fall since World War II [for
women]” (p. 107).

To construct a confidence interval (CI) for a quantile difference, for example, we use
linear combinations of order statistics (i.e., L-statistics) as interval endpoints. To de-
termine which L-statistics to use, we rely on the probability integral transform (Fisher,
1932; Neyman, 1937; Pearson, 1933): the distribution of order statistics (i.e., ordered
sample values) relative to the population quantile values is analogous to the distribution
of order statistics from a Unif(0, 1) distribution relative to the quantile indices.

The accuracy of each new unconditional CI is precisely characterised in terms of cover-
age error, defined as the difference between the true and nominal coverage probabilities.
The foundation of our methods’ high-order accuracy is the use of the probability integral
transform and a Dirichlet (instead of Gaussian) approximation of the distribution of a
linear combination of “fractional” order statistics (linearly interpolated between observed
order statistics), formally studied in Goldman and Kaplan (2017). For our confidence set
for a vector of quantiles, the Dirichlet approximation is the only source of error, so cov-
erage error is O(n−1). For a QD or IQR, nuisance parameters arise. Using our proposed
bandwidth to nonparametrically estimate the nuisance parameters limits coverage error
to O(n−2/3 log(n)). Our two-sided CIs are equal-tailed rather than symmetric (like the
usual ±1.96SE interval), giving a more intuitive sense of uncertainty when the estimator’s
distribution is skewed, as is often true in the tails. In finite-sample simulations, our CI
has more robust coverage than a variety of methods (normal, bootstrap, permutation)
and usually the shortest length among CIs attaining the desired coverage probability.

Our quantile difference CI’s coverage error is of the same theoretical order (up to
the log(n)) as the coverage error of the Edgeworth expansion-based method of Kaplan
(2015), but our finite-sample coverage error (in simulations) is smaller across a variety

2This IQR is a different object of interest than the “interquantile range” of, e.g., Krewski (1976)
or Sathe and Lingras (1981), whose CIs are intended to include the entire range [Q(τ1), Q(τ2)] with
probability 1 − α, rather than the difference Q(τ2) − Q(τ1). Taking the lengths of their “inner” and
“outer” CIs forms an asymptotically conservative CI for the difference.

3Because they are interested in illustrating their results about quantile regression under misspeci-
fication, they actually average conditional quantiles to get overall average conditional IQR values, but
the qualitative idea is similar.

4Equivalently, they describe these as log quantile ratios, e.g., (the log of) the 0.8-quantile divided
by the 0.5-quantile. This is equivalent to the log 0.8-quantile minus the log 0.5-quantile. Because log is
a continuous increasing function, this is equivalent to the 80–50 IQR of log earnings. That is, with
QY (·) the quantile function of earnings (Y ), and Qlog(Y )(·) the quantile function of log earnings,

log(QY (0.8)/QY (0.5)) = log(QY (0.8))− log(QY (0.5)) = Qlog(Y )(0.8)−Qlog(Y )(0.5).
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Inference on quantile differences and ranges 3

of data generating processes. This finite-sample advantage derives in part from our CI
length not being inversely proportional to a probability density function (PDF) estimate,
unlike with a normality-based CI. Since nonparametric PDF estimates can be arbitrarily
large or close to zero, the corresponding normality-based CI lengths fluctuate more from
sample to sample. Section 3 has details.

We extend all our methods to a nonparametric conditional quantile model. If all covari-
ates are discrete, then our methods are immediately applicable, like with subpopulations
based on education or sex as in Angrist et al. (2006) or Kopczuk et al. (2010). If some
covariates are continuous, then we propose looking at the “local” observations whose co-
variate vector is near the point of interest (like with local polynomial estimation) and
applying our unconditional method to the corresponding outcome obsevations Yi. We
provide bandwidth rates that maximise our methods’ coverage accuracy (which differ
from those that maximise estimation precision), as well as plug-in bandwidths that work
well in simulations; we are unaware of parallel results for local polynomial quantile re-
gression.5 Beside achieving good theoretical accuracy, our methods are accurate in finite-
sample simulations, providing more robust coverage in some cases and shorter intervals
in others. Our methods are also easy to use, with steps for construction in Supplemental
Appendix E and available as functions in R.

The high-order accuracy achieved by our methods is important not only with modest
sample sizes (e.g., for experiments) but also for nonparametric conditional analysis with
small local sample sizes. For example, even with n = 1024 and just five binary covariates,
the smallest local sample size cannot exceed 1024/25 = 32.

Our new methods are not simple extensions of existing methods. Naively combining
individual quantile CIs (like those in Goldman and Kaplan, 2017) is overly conservative
for a QD or IQR, even asymptotically. Projecting from a 1−α confidence set for the rele-
vant quantiles also produces an asymptotically conservative CI. For example, Chu (1957)
proposes an order statistic-based CI for the IQR, but it is asymptotically conservative
because it is based on projection.6 Our CI appears to be the first order statistic-based CI
with even first-order exact asymptotic coverage of the QD or IQR, let alone high-order
accuracy.

The main limitations of our conditional approach (with continuous covariates) are
the iid sampling assumption and the use of a uniform kernel (which excludes boundary
and higher-order kernels). Both seem necessary to link to the Dirichlet distribution and
establish high-order accuracy. For inference on a single conditional quantile, Fan and
Liu (2016) relax these assumptions, but only first-order accuracy is established, and no
conditional QD or conditional IQR method is provided.7 Qu and Yoon (2015) allow a
local linear estimator (eqn. (4)) with a relatively general kernel function (Assumption
4), although still with iid sampling (Assumption 1(iii)), and they only show first-order
accuracy (focusing instead on uniformity over the conditional quantile process). Their
CI is included in our simulations, where it has much worse coverage error in some cases
and significantly longer length in others. Since our method may be seen as using the
residuals from a local constant estimator, it may be possible to extend our approach to
use residuals from a local linear estimator, but this is left to future work.

Section 2 concerns fractional order statistic theory, including a new result. Sections 3

5For local polynomial (mean) regression, such results are in Calonico, Cattaneo, and Farrell (2017).
6There are other loose inequalities, like the first two in the proof of Lemma 1 on page 174.
7For further comparison in the single quantile case, see Goldman and Kaplan (2017).
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and 4 respectively discuss unconditional and conditional confidence intervals. Section 5
contains an empirical example. Appendix A contains proof sketches; Appendix B has
implementation details. The Supplemental Appendix (on the journal’s website) includes
fully detailed proofs, detailed steps to construct each CI we propose, and simulation
results, among other material.

Acronyms used include those for [conditional] interquantile range ([C]IQR), [condi-
tional] quantile difference ([C]QD), [conditional] quantile treatment effect ([C]QTE), con-
fidence interval (CI), confidence set (CS), coverage probability (CP), coverage probability
error (CPE), cumulative distribution function (CDF), mean squared error (MSE), mean
value theorem (MVT), and probability density function (PDF), and GK is Goldman and
Kaplan (2017). Notationally, Beta(a, b) is a beta distribution with parameters a and b,
or such a random variable if clear from context, and Dir(k1, k2, . . .) is a Dirichlet dis-
tribution (or random variable); Φ(·) and φ(·) are the standard normal CDF and PDF,
respectively;

.
= should be read as “is equal to, up to smaller-order terms”; ≍ as “has exact

(asymptotic) rate/order of”; and random and non-random (column) vectors are typeset
as Z = (Z1, Z2, . . .)

′ and z = (z1, z2, . . .)
′, respectively, with random and non-random ma-

trices Z and z, and scalar random variables and values Z and z. For functions f : R 7→ R,
let f(z) ≡ (f(z1), . . . , f(zJ ))

′.

2. FRACTIONAL ORDER STATISTICS

In this section, we introduce notation for fractional order statistics, state prior results,
and contribute a new result.

Let Xi
iid∼ FX(·), a continuous, unknown CDF with corresponding quantile function

QX(τ) ≡ inf{x : FX(x) ≥ τ}. If additionally FX(·) is strictly increasing, which we assume
it is in a neighbourhood of the quantile(s) of interest, then QX(·) = F−1

X (·). Let Xn:k

denote the kth order statistic in a sample of size n, so Xn:1 < Xn:2 < · · · < Xn:n. For

readers new to (fractional) order statistics, assuming Xi
iid∼ Unif(0, 1) upon first reading

may help with intuition since then QX(τ) = τ and FX(x) = x for x ∈ [0, 1].

The primary Dirichlet results that follow are from Wilks (1962, pp. 236–238). By the
probability integral transform (Fisher, 1932; Neyman, 1937; Pearson, 1933) and continu-
ity of FX(·),

Ui ≡ FX(Xi)
iid∼ Unif(0, 1), (2.1)

and FX(QX(u)) = u for any u ∈ (0, 1). Using the distribution of standard uniform order
statistics,

Un:k ≡ FX(Xn:k) ∼ Beta(k, n+ 1− k). (2.2)

Moreover, the vector

(Un:1, Un:2 − Un:1, . . . , Un:n − Un:n−1, 1− Un:n) ∼ Dir(1, . . . , 1), (2.3)

a Dirichlet distribution with each of the n + 1 parameters equal to one. Generally, a
Dirichlet distribution is supported on the unit simplex, i.e., vectors whose components
sum to one; the distribution in (2.3) is uniform over the unit simplex (i.e., constant PDF).
A Dirichlet’s univariate marginals are beta distributions; in (2.3), these are Un:k+1 −
Un:k ∼ Beta(1, n), a highly right-skewed distribution on [0, 1] with mode equal to zero
and mean 1/(n+ 1).
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Inference on quantile differences and ranges 5

The Wilks (1962) results determine coverage probabilities. For the τ -quantile,

P(Xn:k < QX(τ)) = P(FX(Xn:k) < FX(QX(τ))) = P(FX(Xn:k) < τ), (2.4)

which from (2.2) is the Beta(k, n + 1 − k) CDF evaluated at τ . This provides the ex-
act, finite-sample coverage probability (CP) of any confidence interval for QX(τ) whose
endpoint is an order statistic, Xn:k.

For given n and desired CP 1 − α, it is unlikely that any integer k exactly solves
P(FX(Xn:k) < τ) = 1− α. To proceed, one must either choose a different α, randomise,
or interpolate. In this paper, we interpolate. The following definitions are helpful.

Definition 2.1. The linearly (L) interpolated kth fractional order statistic for X is

X̂L
n:k ≡ (1− ǫ)Xn:⌊k⌋ + ǫXn:⌊k⌋+1, ǫ ≡ k − ⌊k⌋, (2.5)

where ǫ is the interpolation weight and ⌊·⌋ is the floor function. With reference to (2.1)
and (2.2), the idealised (I) kth fractional order “statistic” for U is

Ũ I
n:k ≡ (1− C)Un:⌊k⌋ + CUn:⌊k⌋+1 ∼ Beta(k, n+ 1− k),

C ∼ Beta(ǫ, 1− ǫ), C ⊥⊥ {Un:k}nk=1,
(2.6)

using Jones (2002, eqn. (2)). If k is an integer, then ǫ = C = 0, so X̂L
n:k = Xn:k =

QX(Ũ I
n:k).

The construction of Ũ I
n:k can be extended to multiple8 k as in Jones (2002), with joint

distribution similar to (2.3):

(Ũ I
n:k1

, Ũ I
n:k2

− Ũ I
n:k1

, . . . , 1− Ũ I
n:kJ

) ∼ Dir(k1, k2 − k1, . . . , n+ 1− kJ). (2.7)

Notationally, we write Ũ I instead of Û I as a reminder that (unless k is an integer)
these are randomised statistics (relying on C), not purely functions of sample values. In
contrast, X̂L

n:k is a (non-randomised) linear combination of observed order statistics, i.e.,
an L-statistic.

There is always a (fractional) k∗ that exactly solves P(Ũ I
n:k∗ < τ) = 1 − α because

the beta CDF is continuous. If the distribution of FX(X̂L
n:k∗) is well approximated by

Ũ I
n:k∗ ∼ Beta(k∗, n + 1 − k∗) from (2.6), then X̂L

n:k∗ is the endpoint of an approximate
1− α confidence interval for QX(τ).

For inference on a quantile difference, we will need to approximate the distribution
of the sample quantile difference that uses fractional order statistics. Theorem 2.1 is a
new result providing such an approximation; a more general version (also new) is stated
in Theorem A.2 and subsequently proved. For IQR inference, the needed result is in
Theorem 2 of Goldman and Kaplan (2017).

Assumption A2.1. For sampling, Xi
iid∼ FX(·) with sample size nx (or just n). If

applicable, Yi
iid∼ FY (·) with sample size ny, samples are independent, and sample sizes

have the same asymptotic rate: nx/ny = δ2 +O(n−1) for constant 0 < δ <∞.

Assumption A2.2. At any quantile index of interest τ , (a) fX(QX(τ)) > 0, and (if

8Originally, Stigler (1977) proposed a fractional order statistic process (for a continuum of k ∈
(0, n+1)) following a Dirichlet process (Ferguson, 1973), but we use only finite-dimensional distributions.

c© Royal Economic Society 2017



6 M. Goldman and D. M. Kaplan

applicable) fY (QY (τ)) > 0; (b) f ′′X(·) is continuous in a neighbourhood of QX(τ), and (if
applicable) f ′′Y (·) is continuous in a neighbourhood of QY (τ).

Assumption A2.2 implies that the first three derivatives of the quantile function are
uniformly bounded in a neighbourhood of τ , and that the first derivative is uniformly
bounded away from zero. The PDF having two derivatives is also required for a two-
term Edgeworth expansion of a sample quantile; e.g., see Theorem 13.2 of DasGupta
(2008, p. 189–190). Our confidence intervals still have exact asymptotic coverage (just
not higher-order accuracy) without the PDF derivatives.

Theorem 2.1. Let Assumptions A2.1 and A2.2 hold. Let L0 ≡ QY (u) − QX(u). Uni-
formly over u = τ + o(1),

sup
K∈R

∣∣P(Ŷ L
ny :(ny+1)u − X̂L

nx:(nx+1)u < L0 + n−1/2K)

− P(QY (Ũ
I
ny :(ny+1)u)−QX(Ũ I

nx:(nx+1)u) < L0 + n−1/2K)
∣∣ = O(n−1).

3. UNCONDITIONAL INFERENCE

In this section, we develop new confidence intervals (CIs) for the unconditional objects of
interest and present their theoretical properties. For all methods, detailed steps for con-
struction are given in Supplemental Appendix E, and code is available in the replication
files on the journal’s (or latter author’s) website.

For quantile index τj ∈ (0, 1) and confidence level 1−α, let khj (α) and klj(α) be defined
to satisfy (superscript “h” for high, “l” for low)

α = P(Ũ I
n:kh

j (α)
< τj), α = P(Ũ I

n:kl
j(α)

> τj), (3.1)

where Ũ I
n:k ∼ Beta(k, n+1− k) from (2.6). (For QD inference, we omit the j subscript.)

These are equivalent to (7) and (8) in Hutson (1999).
For a single quantile QX(τj), one-sided CI endpoints are then X̂L

n:kh
j (α)

or X̂L
n:kl

j(α)
.

An equal-tailed two-sided CI has endpoints X̂L
n:kh

j (α/2)
and X̂L

n:kl
j(α/2)

. Such CIs were

proposed by Hutson (1999) and shown to have coverage probability error (CPE) of order
O(n−1) by Goldman and Kaplan (2017).

With multiple quantiles or samples, our general approach is to construct an individual
CI for each quantile and then combine the CIs into an appropriate overall CI. However,
using the nominal α in (3.1) to get pointwise 1 − α CP for the individual CIs leads to
over-coverage or under-coverage, even asymptotically. Additional arguments are required
to determine and estimate the properly calibrated pointwise CP 1− α̃ to achieve overall
1− α CP for each particular object of interest.

3.1. Joint inference on multiple quantiles

We construct a confidence set (CS) for the vector

QX(τ ) ≡ (QX(τ1), . . . , QX(τJ))
′,

where each τj ∈ (0, 1). Given α̃, we construct a nominal 1 − α̃ CI for each QX(τj) and
take the Cartesian product to be the CS for QX(τ ). With two-sided individual CIs, using

c© Royal Economic Society 2017



Inference on quantile differences and ranges 7

(3.1), the CS for QX(τ ) is the Cartesian product

J∏

j=1

[X̂L
n:kl

j(α̃/2)
, X̂L

n:kh
j (α̃/2)

], (3.2)

We use the same α̃ at each quantile for simplicity and to achieve equal pointwise CP of
each QX(τj).

9

The value of α̃ must be precisely calibrated to achieve optimal coverage accuracy. Since
there is positive but not perfect dependence across quantiles, α̃ = 1 − (1 − α)1/J is too
small and α̃ = α is too big; neither yields asymptotically exact CP, let alone high-order
accuracy. To achieve high-order accuracy, α̃ is calibrated using (2.7) such that

1− α = P

({
J⋂

j=1

{Ũ I
n:kh

j (α̃/2)
> τj}

}⋂{ J⋂

j=1

{Ũ I
n:kl

j(α̃/2)
< τj}

})
, (3.3)

where
⋂

denotes the intersection of events and can be read as “and.” Solving (3.3) for α̃
numerically is easy because 1) it is a one-dimensional search over α̃ ∈ (0, 1) and 2) the
right-hand side is a strictly decreasing function of α̃.

Theorem 3.1. Under Assumptions A2.1 and A2.2, the CS in (3.2) has CPE of order
O(n−1).

The rectangular CS in (3.2) has some advantages over the elliptical CS based on asymp-
totic normality, although being larger is a disadvantage. First, it will be a helpful interme-
diate step in constructing the QD and IQR CIs, which are not larger than normality-based
CIs. Second, the CS can be used to test the family of hypotheses H0j : QX(τj) = Q0(τj)
for j = 1, . . . , J , rejecting H0j if and only if Q0(τj) lies outside the 1− α̃ CI for QX(τj).
Because the CIs have joint 1−α CP, this procedure has strong control of the familywise
error rate at level α as defined in, e.g., Lehmann and Romano (2005, §9.1): the proba-
bility of falsely rejecting at least one true H0j is below α, regardless of which H0j are
true. Goldman and Kaplan (2016) extend this approach to distributional inference where
J = n, including stepdown and pre-test procedures to improve power.

3.2. Inference on interquantile ranges

The object of interest is, for 0 < τ1 < τ2 < 1,

IQR = QX(τ2)−QX(τ1). (3.4)

As in Section 3.1, 1 − α̃ CIs are constructed for QX(τ1) and QX(τ2), respectively, but
now a different α̃ must be chosen to achieve asymptotically exact CP.10 The CI for the
IQR contains all values q2 − q1 such that q1 and q2 are in the respective 1 − α̃ CIs for
QX(τ1) and QX(τ2).

Naively using α̃ = α causes first-order CPE: even asymptotically, the CI is too wide.

9The related idea of even pointwise type I error rates is applied to inference on the entire distribution
by Goldman and Kaplan (2016).

10If one instead constructs a 1− α̃1 CI for the τ1-quantile and a 1− α̃2 CI for the τ2-quantile, for the
corresponding hypothesis test, there is no first-order tradeoff in power among combinations (α̃1, α̃2) that
control size, as seen in the proof of Theorem 3.2(c), so in this sense nothing is lost by setting α̃1 = α̃2 = α̃
as we do. This is partly because the object of interest is a scalar, unlike in Section 3.1.

c© Royal Economic Society 2017



8 M. Goldman and D. M. Kaplan

The intuition is the same as with a difference of normal random variables whose positive
covariance is unaccounted for.11 Alternatively, using the α̃ < α that generates a 1 − α
confidence set for (QX(τ1), QX(τ2)) is even worse (i.e., even wider). Instead, we determine
the α̃ > α that achieves exact asymptotic CP and minimises CPE.

The CPE-optimal α̃ is often much larger than the naive choice α̃ = α. For example, with
n = 100, QX(u) = u (uniform), and (τ1, τ2) = (0.25, 0.75) (interquartile range), the CPE-
optimal α̃ given α = 0.1 is α̃ = 0.34 (rounded). In a simulation with 10 000 replications,
the corresponding CI had CP 0.9058, extremely close to the nominal 1 − α = 0.9. In
contrast, the CI using α̃ = α was far too wide, with 0.9954 CP. Projecting from a 1− α
confidence set for (QX(τ1), QX(τ2)) entails α̃ = 0.053 (rounded), which is even more
conservative, with 0.9991 CP.

Unlike in Section 3.1, the CPE-optimal α̃ is not distribution-free. Now that the object of
interest is a linear combination of quantiles, we need to work with linear approximations
of QX(·). This reduces the dimension of the nuisance parameter from infinity to two, by
using only the scalars Q′

X(τ1) and Q′
X(τ2) instead of the function QX(·), but it does not

eliminate the nuisance parameter. Ignoring the linear approximation error, and assuming
k1 and k2 are integers for now,

P(Xn:k2
−Xn:k1

> QX(τ2)−QX(τ1)) = P(QX(Un:k2
)−QX(τ2)− (QX(Un:k1

)−QX(τ1)) > 0)

≈ P((Un:k2
− τ2)Q

′
X(τ2)− (Un:k1

− τ1)Q
′
X(τ1) > 0).

Equivalently, this can be written in terms of a single nuisance parameter by dividing
through by Q′

X(τ2):

P

(
(Un:k2

− τ2)− (Un:k1
− τ1)

Q′
X(τ1)

Q′
X(τ2)

> 0

)
.

That is, after taking linear approximations of the quantile function at τ1 and τ2, what
matters asymptotically is the ratio of the slopes. Either way, using (2.7), the joint distri-
bution of (Un:k1

, Un:k2
) is known since

(Un:k1
, Un:k2

− Un:k1
, 1− Un:k2

) ∼ Dir(k1, k2 − k1, n+ 1− k2),

but Q′
X(τ1) and Q′

X(τ2) must be estimated. More generally, Theorem 2 of Goldman and
Kaplan (2017) lets us use fractional k1 and k2 with only smaller-order error from inter-
polation; the proof of our Theorem 3.2 also rigourously treats the error from linearisation
that was ignored above, as well as the nuisance parameter estimation error.

The nuisance parameters Q′
X(τ1) and Q′

X(τ2) are also known as “sparsities” since they
can be written as the inverse of a density: Q′

X(τ) = 1/fX(QX(τ)).12 We use a “quantile
spacing” estimator first proposed by Siddiqui (1960). For j = 1, 2, given smoothing
parameter mj ,

Q̂′
X(τj) =

n

2mj
(Xn:⌊(n+1)τj⌋+mj

−Xn:⌊(n+1)τj⌋−mj
), (3.5)

11For example, if X ∼ N(0, 1) and Y ∼ N(0, 1) are jointly normal with covariance σXY ≥ 0 (since
order statistics are positively correlated), then Y −X ∼ N(0, 1 + 1− 2σXY ): the variance is at most 2,

when σXY = 0. The “CI endpoint” Y − X + 1.96
√
2 ≈ Y − X + 2.8 thus has at least 95% probability

of being above zero. Naively combining the individual 95% “CIs” Y + 1.96 and X − 1.96 instead yields
Y −X + 3.9, much wider still.

12Although the inverse density is a more common presentation, we prefer the quantile derivative
notation as a more explicit reminder of its origin in a linear expansion, and because it can be directly

estimated (whereas the inverse density requires first estimating Q̂X(τ) as the point of evaluation).
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Inference on quantile differences and ranges 9

with Q̂′
X (instead of Q̂′

X) indicating the estimator of a derivative (instead of the derivative
of an estimator).

We choose mj in (3.5) to make the CI for the IQR as accurate as possible, i.e., to
minimise CPE. Interestingly, this CPE-optimal rate is different than the rate mj ≍ n4/5

that minimises mean squared error (MSE) of the nuisance parameter estimator Q̂′
X(τj)

(analogous to the more familiar mj/n ≍ n−1/5 MSE-optimal kernel bandwidth rate).
Instead, mj ≍ n2/3 minimises two-sided CPE, echoing results from Hall and Sheather
(1988, p. 384) for inference on a single quantile.13 Estimation details, including our plug-
in bandwidth (for mj), are in Appendix B.1.

The lower one-sided CI for the IQR is, using notation from (2.5) and (3.1),

(−∞, X̂L
n:kh

2
(α̃) − X̂L

n:kl
1
(α̃)), (3.6)

where α̃ implicitly depends on Q̂′
X(τ1) and Q̂′

X(τ2) and satisfies

1− α = P(Q̂′
X(τ2)(Ũ

I
n:kh

2
(α̃) − τ2)− Q̂′

X(τ1)(Ũ
I
n:kl

1
(α̃) − τ1) > 0). (3.7)

As shown in the proof of Theorem 3.2, the actual CP of such a CI is 1− α+ Th +Eh +
O(n−1), where Th is the remainder from the first-order Taylor expansion (“T” for Taylor),

Eh is from estimation error in Q̂′
X(τ1) and Q̂′

X(τ2), and O(n−1) is from Goldman and
Kaplan (2017, Thm. 2). The rate-limiting term turns out to be Th = O(n−1/2 log(n)).

For an upper one-sided CI for the IQR, the analogues of (3.6) and (3.7) are, respec-
tively,

(X̂L
n:kl

2
(α̃) − X̂L

n:kh
1
(α̃),∞), (3.8)

1− α = P(Q̂′
X(τ2)(Ũ

I
n:kl

2
(α̃) − τ2)− Q̂′

X(τ1)(Ũ
I
n:kh

1
(α̃) − τ1) < 0). (3.9)

CP is 1− α+ Tl + El +O(n−1), where similarly Tl = O(n−1/2 log(n)) dominates.
An equal-tailed two-sided 1− α CI for the IQR is the intersection of upper and lower

one-sided 1−α/2 CIs. With mj ≍ n2/3, Eh+El = O(n−2/3 log(n)) is the dominant CPE
term since Th + Tl = O(n−1(log(n))2).

The following theorem collects results on CPE of the CIs and power of the correspond-
ing hypothesis tests. As stated and proved in the appendix (Theorem A.3), the same
rates hold when generalising the object of interest to any linear combination of quantiles,
and our code implements the more general method.

Theorem 3.2. Let Assumptions A2.1 and A2.2 hold.

(a) The one-sided lower and upper CIs in (3.6) and (3.8) have O(n−1/2 log(n)) CPE

if Q̂′
X(τ1) and Q̂′

X(τ2) are estimated14 by (3.5) with smoothing parameters m1 and
m2 having rate larger than n1/2 and smaller than n3/4.

13Specifically, their result comes from minimising the higher-order terms in type I error of a Studen-
tised quantile-based hypothesis test, using an Edgeworth expansion. Kaplan (2015, §5) instead controls
type I error by using fixed-smoothing critical values and chooses m to maximise (higher-order) power,

but he derives the same m ≍ n2/3 rate, and even a very similar formula. Kaplan (2015, §5.3) also finds

the n2/3 rate optimal for QD testing.
14Absent a formal demonstration, we conjecture the same rates hold if the estimator in (3.5) is replaced

with a kernel density estimator with bandwidth of order mj/n. In practice, results are often numerically
equivalent to multiple significant figures.
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10 M. Goldman and D. M. Kaplan

(b) Two-sided CIs, formed by the intersection of upper and lower one-sided 1 − α/2

CIs, have O(n−2/3 log(n)) CPE if Q̂′
X(τ1) and Q̂′

X(τ2) are estimated14 by (3.5)
with m1,m2 ≍ n2/3.

(c) The asymptotic probabilities of excluding Dn = QX(τ2) − QX(τ1) + κn−1/2 from
lower one-sided (l), upper one-sided (u), and equal-tailed two-sided (t) CIs (i.e.,
asymptotic power of the corresponding hypothesis tests) are

P l
n(Dn) → Φ(zα + S), Pu

n(Dn) → Φ(zα − S), Pt
n(Dn) → Φ(zα/2 + S) + Φ(zα/2 − S),

where S ≡ κ/
√
V and

V ≡ τ1(1− τ1)

(fX(QX(τ1)))2
+

τ2(1− τ2)

(fX(QX(τ2)))2
− 2

τ1(1− τ2)

fX(QX(τ1))fX(QX(τ2))
, (3.10)

the usual asymptotic variance of the (scaled) sample IQR.

3.3. Inference on two-sample quantile differences

QD inference is very similar to IQR inference, but somewhat easier: we need to approx-
imate the distribution of a difference of order statistics, but now we assume they are
independent. Consequently, this section largely parallels Section 3.2 but is briefer.

The object of interest is the τ -QD, D = QY (τ)−QX(τ). Notationally, certain variables
defined previously will now have an additional subscript denoting the sample (x or y).

CI construction is similar to Section 3.2. One-sample 1 − α̃ CIs are constructed for
QX(τ) and QY (τ). The CI for the QD contains all values qY − qX such that qY and qX
are in the respective 1 − α̃ CIs for QY (τ) and QX(τ). As in Section 3.2, naively using
α̃ = α is asymptotically conservative, as is projecting from a 1 − α CS that has α̃ < α;
we find the α̃ > α achieving exact asymptotic CP and minimising higher-order CPE.

For intuition, ignoring interpolation and remainder terms and letting nx = ny = n,
consider the CP of a one-sided CI with upper endpoint Yn:k2

−Xn:k1
. Using the probability

integral transform, write Yn:k2
= QY (U

Y
n:k2

) and Xn:k1
= QX(UX

n:k1
), where UY and UX

are independent sets of uniform order statistics. Similar to Section 3.2,

P(Yn:k2
−Xn:k1

> QY (τ)−QX(τ)) = P(QY (U
Y
n:k2

)−QY (τ)− (QX(UX
n:k1

)−QX(τ)) > 0)

≈ P((UY
n:k2

− τ)Q′
Y (τ)− (UX

n:k1
− τ)Q′

X(τ) > 0).

Using (2.7) and A2.1, the joint distribution of (UY
n:k2

, UX
n:k1

) is known to be

UY
n:k2

∼ Beta(k2, n+ 1− k2), UX
n:k1

∼ Beta(k1, n+ 1− k1), UY
n:k2

⊥⊥ UX
n:k1

,

but Q′
Y (τ) and Q′

X(τ) must be estimated. Similar to the IQR case, the proof of Theo-
rem 3.3 shows how to use Theorem 2.1 to allow for fractional k1 and k2 and treats the
errors from linearisation and nuisance parameter estimation.

The lower one-sided QD CI and calibration equation parallel the IQR versions in (3.6)
and (3.7), respectively: using (2.7), (3.1), and (3.5),

(−∞, Ŷ L
ny :kh

y (α̃)
− X̂L

kl
x(α̃)

), (3.11)

1− α = P(Q̂′
Y (τ)(Ũ

I,Y
ny :kh

y (α̃)
− τ)− Q̂′

X(τ)(Ũ I,X
nx:kl

x(α̃)
− τ) > 0). (3.12)
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Inference on quantile differences and ranges 11

For an upper one-sided CI, the analogues of (3.11) and (3.12) are

(Ŷ L
ny :kl

y(α̃)
− X̂L

nx:kh
x(α̃)

,∞), (3.13)

1− α = P(Q̂′
Y (τ)(Ũ

I,Y
ny :kl

y(α̃)
− τ)− Q̂′

X(τ)(Ũ I,X
nx:kh

x(α̃)
− τ) < 0). (3.14)

An equal-tailed two-sided CI is the intersection of upper and lower one-sided 1 − α/2
CIs.

The CPE rates in Theorem 3.3 are the same as in Theorem 3.2. Theorem A.6 (in the
appendix) shows that the same rates hold more generally for CIs for differences of linear
combinations of quantiles.

Theorem 3.3. Let Assumptions A2.1 and A2.2 hold.

(a) The one-sided lower and upper CIs in (3.11) and (3.13) have O(n−1/2 log(n)) CPE

if Q̂′
X(τ) and Q̂′

Y (τ) are estimated15 as in (3.5) with n1/2 . mx,my . n3/4.
(b) Two-sided CIs, formed by the intersection of upper and lower one-sided 1 − α/2

CIs, have O(n−2/3 log(n)) CPE if Q̂′
X(τ) and Q̂′

Y (τ) are estimated15 as in (3.5)
with mx,my ≍ n2/3.

(c) The asymptotic probabilities of excluding Dn = QY (τ) − QX(τ) + κn−1/2 from
lower one-sided (l), upper one-sided (u), and equal-tailed two-sided (t) CIs (i.e.,
asymptotic power of the corresponding hypothesis tests) are

P l
n(Dn) → Φ(zα + S), Pu

n(Dn) → Φ(zα − S), Pt
n(Dn) → Φ(zα/2 + S) + Φ(zα/2 − S),

S ≡ κ/
√

Vx + Vy =
κ√

τ(1− τ)
√
(Q′

X(τ))2 + (Q′
Y (τ))

2
.

For additional intuition, we provide an analytic α̃ based on a Gaussian rather than
beta distribution, with nx = ny. For a two-sided CI, letting γ = Q′

Y (τ)/Q
′
X(τ),

α̃/2 = Φ(Φ−1(α/2)/θ∗), θ∗ ≡ 1 + γ√
1 + γ2

. (3.15)

Since γ ∈ [0,∞), then θ∗ ∈ [1,
√
2]. The largest possible α̃ is attained if θ∗ =

√
2, when

Q′
X(τ) = Q′

Y (τ) so that γ = 1, and the sample quantiles Q̂X(τ) and Q̂Y (τ) have the same
asymptotic variance. The smallest possible value is α̃ = α, as Q′

Y (τ) → 0, γ → 0, and
θ∗ → 1. That is, as the distribution of Y collapses to a constant (locally), the problem
reduces to one-sample inference (asymptotically), so α̃ = α is intuitive. More details are
in Supplemental Appendix F.

Section 1 mentioned a finite-sample advantage of our method over normality-based CIs
whose length is proportional to a (nonparametrically estimated) PDF-based standard
error. This advantage can now be illustrated further. Consider a one-sided 90% CI for
the median difference QY (0.5)−QX(0.5) between two Unif(0, 1) populations, with nx =
ny = 39. The upper endpoint should be approximately Y39:23 − X39:17 (simulated CP

is 91.4%). Even with a worst-case coding error that sets Q̂′
X(0.5)/Q̂′

Y (0.5) = 0 in every
sample, the CI would not change dramatically: it would be Y39:24 − X39:16 and have
96.7% CP. This CI is somewhat too long, but it is much better than the normality-based

CI with a worst-case error setting Q̂′
X(0.5) or Q̂′

Y (0.5) arbitrarily large: such a CI is

15The comments in Footnote 14 apply here, too.
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12 M. Goldman and D. M. Kaplan

arbitrarily long, with CP nearing 100%. At the opposite extreme, if instead X = 0.5
is a degenerate random variable while Y ∼ Unif(0, 1), but we had a worst-case error

setting Q̂′
X(0.5)/Q̂′

Y (0.5) = 1, our CI would have 83.2% CP. This is somewhat too
short, but it is much better than the normality-based CI with a worst-case error setting

Q̂′
X(0.5) = Q̂′

Y (0.5) = 0: such a CI has 0% CP. This illustrates how our approach
improves finite-sample performance by ameliorating the effect of nonparametric nuisance
parameter estimation on both CP and CI length variability.

4. CONDITIONAL INFERENCE

We now present CIs for conditional versions of the objects in Section 3. Theoretical prop-
erties are given, including the bandwidth rate that maximises coverage accuracy. Detailed
steps for construction are given in Supplemental Appendix E, and code is available in
the replication material on the journal’s (or latter author’s) website.16

Let QY |W(u | w) be the conditional u-quantile function of scalar Y given W ∈ W ⊆
R

d, evaluated at W = w. A sample of {Yi,Wi}ni=1 is drawn. If the conditional CDF
FY |W(· | w) is continuous at QY |W(u | w), then FY |W(QY |W(u | w) | w) = u. For a
chosen W = w0, quantile indices τj ∈ (0, 1), and observed binary (“treatment”) variable
Ti, the objects of interest are

Vector: (QY |W(τ1 | w0), . . . , QY |W(τJ | w0)),
CIQR: QY |W(τ2 | w0)−QY |W(τ1 | w0),
CQD: QY |W,T (τ | w0, 1)−QY |W,T (τ | w0, 0).

The CQD has a causal interpretation under conditional independence where Y0, Y1 ⊥⊥ T |
W for potential outcomes Y0 and Y1, as in Assumption 1 of MaCurdy, Chen, and Hong
(2011, p. 545). Then, the CQD is a conditional quantile treatment effect as on their page
547. In our appendix, we include results for more general objects of interest, including
conditional IQR differences.

If W is discrete, we can take all observations with Wi = w0 and compute the appro-
priate CI from the corresponding Yi values. This achieves the same CPE rate as in the
unconditional setting, although of course finite-sample CPE is greater. The CPE rate re-
mains unchanged even with considerable dependence among the Wi as long as the Yi are
conditionally independent and the local sample size

∑n
i=1 1{Wi = w0} is almost surely

of order n. The key is that we have iid draws of Yi from the same conditional quantile
function, QY |W(· | w0), so the problem reduces to that of the unconditional setting.

If W is continuous, then we must use observations with Wi 6= w0. As in Chaudhuri
(1991), we use observations with Wi ∈ Cb for some set Cb depending on bandwidth b.
Although we omit the subscript n, this is actually a deterministic sequence of bandwidths,
bn.

If d = 1, then Cb is the interval [w0 − b, w0 + b]. This is equivalent to using a uniform
kernel or symmetric nearest-neighbour method. For d > 1, Cb is a hypercube centred at
w0. Since the hypercube has the same width in each dimension, some normalisation of
the Wi should be used in practice, although the asymptotic CPE rates are unaffected.

16Our code relies on the following contributions: Koenker (2016), Duong (2017), Hayfield and Racine
(2008), Furrer, Nychka, and Sain (2012), and of course R Core Team (2017).
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Inference on quantile differences and ranges 13

Definition 4.1. Given bandwidth b and point of interest w0, let

Cb ≡ {w : w ∈ R
d, ‖w −w0‖∞ ≤ b}, Nn ≡

n∑

i=1

1{Wi ∈ Cb},

where ‖v‖∞ ≡ max1≤j≤d|vj | is the max-norm and C stands for (hyper)cube. The “local
sample” is

{Yi : Wi ∈ Cb, 1 ≤ i ≤ n},
with local sample size Nn. The u-quantile of Y conditional on W ∈ Cb is denoted
QY |W(u | Cb) and satisfies

u = P(Y < QY |W(u | Cb) | W ∈ Cb).

For mixed discrete and continuous components of W, we can restrict attention to
the subsample where the discrete components of Wi exactly match those of w0, and
then smooth over the continuous components. The subsample size is still of order n, so
asymptotic rates are unaffected by the presence of discrete covariates (although, again,
the finite-sample difference may be important). Consequently, without loss of generality,
we proceed with Wi containing only continuous components.

Assumption A4.1. Sampling of {Yi,Wi} or {Yi,Wi, Ti} is iid, for continuous scalar
Yi, continuous vector Wi ∈ W ⊆ R

d, and (for CQD inference) binary indicator Ti with
0 < P(Ti = 1) < 1. The point of interest W = w0 is in the interior of W, and the
quantile indices of interest are τj ∈ (0, 1).

Assumption A4.2. The marginal density of W, denoted fW(·), satisfies 0 < fW(w0) <
∞ and has at least one continuous derivative. For CQD inference, this applies to both
fW|T (w0 | T = 0) and fW|T (w0 | T = 1).

Assumption A4.3. For each τj, for all u in a neighbourhood of τj and all w in a
neighbourhood of w0, QY |W(u | w) has at least two continuous derivatives in w. For
CQD inference, this applies to both QY |W,T (u | w, 0) and QY |W,T (u | w, 1).

Assumption A4.4. For each τj, for all u in a neighbourhood of τj and all w in a
neighbourhood of w0, fY |W(QY |W(τj | w0) | w0) is uniformly bounded away from
zero. For CQD inference, this applies to both fY |W,T (QY |W,T (τj | w0, 0) | w0, 0) and
fY |W,T (QY |W,T (τj | w0, 1) | w0, 1).

Assumption A4.5. For each τj, for all y in a neighbourhood of QY |W(τj | w0) and all
w in a neighbourhood of w0, fY |W(y | w) has a second derivative in its first argument
(y) that is uniformly bounded and continuous in y. For CQD inference, this applies to
both fY |W,T (y | w, 0) and fY |W,T (y | w, 1), for y in a neighbourhood of any QY |W,T (τj |
w0, 0) or QY |W,T (τj | w0, 1), respectively.

Assumption A4.6. As n→ ∞, (a) b→ 0, (a’) b2+d/2
√
n→ 0, (b) nbd/(log(n))2 → ∞.

For CQD inference, this applies to both b0 and b1 (bandwidths for the Ti = 0 and Ti = 1
subsamples), and b0 ≍ b1.

All assumptions except A4.6(b) are used in the bias calculation discussed below. As-
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14 M. Goldman and D. M. Kaplan

sumptions A4.1 and A4.4–A4.6 help satisfy Assumption A2.2 when applying the uncon-
ditional methods to the data in Cb. Assumptions A4.1, A4.2, and A4.6 help establish
that Nn is almost surely of order nbd. Given b and n, Assumption A4.1 implies the local
sample of Yi values are drawn iid from the conditional distribution of Y | W ∈ Cb, as in
the unconditional setup. (Local sampling is not purely iid since Cb changes with n, as in
a row-wise iid triangular array.)

From A4.6(i), asymptotically Cb is entirely contained within the neighbourhoods in

A4.3 and A4.5. To get Nn
a.s.→ ∞, A4.6(b) is a primitive condition. This in turn allows

us to restrict attention to only local neighbourhoods around the conditional quantiles of
interest since the CI endpoints converge to the true value at a

√
Nn rate.

Our smoothness assumptions are quite mild. Since we use a uniform kernel, which is
second-order, there is no bias reduction benefit from assuming additional derivatives.
Furthermore, any type of conditional heteroskedasticity is permitted.

For joint inference over m different values of w0, the usual α/m Bonferroni adjustment
can be used. Given the iid sampling in A4.1, if the bandwidth windows (Cb) are mutually
exclusive, this can be refined slightly to 1− (1− α)1/m.

There are two sources of CPE: one from applying an unconditional method, and one
from the bias, QY |W(τ | Cb) − QY |W(τ | w0). For example, for the CQD confidence

interval ĈI, we can decompose the CP for D = QY |W,T (τ | w0, 1) − QY |W,T (τ | w0, 0)
into

P(D ∈ ĈI) = 1− α+ CPEU + CPEBias,

CPEU = P((QY |W,T (τ | Cb, 1)−QY |W,T (τ | Cb, 0)) ∈ ĈI)− (1− α),

CPEBias = P(D ∈ ĈI)− P((QY |W,T (τ | Cb, 1)−QY |W,T (τ | Cb, 0)) ∈ ĈI).

If W were discrete, then Cb = {w0}, so there would be no bias: CPEBias = 0. Replacing
n with Nn in results from Section 3 gives CPEU (as more rigourously justified in the
proofs).

Under A4.2–A4.6, Lemma 5 in Goldman and Kaplan (2017) has

QY |W(τ | Cb)−QY |W(τ | w0) = O(b2).

Further, they show that the CPE from this bias for a one-sided CI for QY |W(τ | w0) is

O(b2N
1/2
n ). This is essentially the O(b2) bias times the O(N

1/2
n ) PDF of the CI endpoint

(by applying the mean value theorem). Since our new methods involve a fixed number

of quantiles, the order of the CPE due to bias remains O(b2N
1/2
n ).

The CPEU and CPEBias terms have high-level parallels to high-order terms in the
Edgeworth expansion for Studentised local polynomial (mean) regression estimators, as
in Calonico et al. (2017). Consider Theorem S.II.1(a) in their Supplement (pp. 58–59).17

Recall that for an unconditional mean, the usual one-sided CI has O(n−1/2) CPE, while
a two-sided CI has O(n−1) CPE since the n−1/2 terms from the two endpoints can-
cel; see Theorem 13.3 of DasGupta (2008, p. 191), for example. For the conditional
mean, analogous to the idea of our CPEU term, the unconditional n−1/2 rate becomes an

N
−1/2
n ≍ (nb)−1/2 term (with scalar W ) for a one-sided CI, and the n−1 term becomes

N−1
n . Our CPEU is paralleled by their (nb)−1/2 term for a one-sided CI, or by their (nb)−1

17http://www.tandfonline.com/doi/suppl/10.1080/01621459.2017.1285776/suppl_file/uasa_a_
1285776_sm5085.pdf
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term for a two-sided CI (since the (nb)−1/2 terms cancel). Our CPEBias is also paralleled
in Calonico et al. (2017): their “scaled bias” term has rate b2

√
nb (for a local constant or

local linear estimator), i.e., b2
√
Nn, the same rate as our CPEBias term. Even more clear

are the parallels between Theorem 2(a) of Calonico et al. (2017) and the CPE for a single
conditional quantile: Goldman and Kaplan (2017, p. 345) have leading CPE terms with
rates N−1

n , b2, and Nnb
4, identical to the three leading higher-order terms in Theorem

2(a) of Calonico et al. (2017) for the two-sided local linear-based CI for the conditional
mean.18 In all cases, the CPE-optimal bandwidth rate can be derived by minimising the
leading higher-order terms; see Corollary 5 in Calonico et al. (2017), for example.

Our results focus on the “CPE-optimal” bandwidth rate that minimises CPEU +
CPEBias. This is different than the usual “MSE-optimal” bandwidth rate that minimises
a point estimator’s mean squared error (MSE), which leads to very poor O(1) CPE. The
usual asymptotic argument in the literature is that any amount of under-smoothing (i.e.,
b → 0 faster) leads to first-order coverage accuracy because the bias is then asymptoti-
cally negligible (compared to the asymptotic standard deviation); e.g., see Assumption
(H) in Fan and Liu (2016, p. 202). Instead, we minimise CPE to attain the best high-
order accuracy.19 This difference is particularly important in small local samples where
severe under-coverage is more likely. The tradeoff is that our CI lengths are generally
longer. In practice, we suggest a bandwidth that drifts from the CPE-optimal rate in
small samples (to maximise coverage accuracy) towards the MSE-optimal rate in large
samples (to increase precision).

CPE-optimal bandwidth rates and overall CPE rates are collected in Theorem 4.1. As
stated and proved in the appendix, the same rates hold when generalising CIQR to any
linear combination of conditional quantiles and generalising CQD to differences of linear
combinations of conditional quantiles; our code implements these more general methods
for d = 1.

Theorem 4.1. Under Definition 4.1 and Assumptions A4.1–A4.6, the following band-
width and CPE rates are CPE-optimal (up to log(n) terms). (a) Joint inference, one-
sided or two-sided: b∗ ≍ n−3/(4+3d), CPE = O(n−4/(4+3d)); (b) CIQR or CQD inference,
one-sided: b∗ ≍ n−1/(2+d), CPE = O(n−1/(2+d) log(n)); (c) CIQR or CQD inference,
two-sided: b∗ ≍ n−7/(12+7d), CPE = O(n−8/(12+7d) log(n)).

Appendix B.2 contains details on plug-in bandwidths.

5. EMPIRICAL APPLICATION

The following results can be replicated using the replication materials from the journal’s
(or latter author’s) website. An additional application to the “gift exchange” experiment
of Gneezy and List (2006) is presented in Supplemental Appendix H, also included in
the replication package.

Simulation results for both unconditional and conditional methods may be found in

18From page 27, ηus ≍
√
nbb2 for a local linear (or local constant) estimator, so ηus/

√
nb ≍ b2 and

η2us ≍ (
√
nbb2)2 = Nnb4.

19This approach of minimising CPE instead of MSE has been used for bandwidth selection by, among
others, Hall and Sheather (1988) and Kaplan (2015) for unconditional quantiles and quantile differences,
and by Calonico et al. (2017) with kernel density and local polynomial regression estimators, using
Edgeworth expansions in each case.
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Supplemental Appendix G, including a DGP based on the following empirical applica-
tion; all may be replicated with the replication materials from the journal’s (or latter
author’s) website. In the unconditional simulations, compared with bootstrap, permu-
tation, normality, and Edgeworth expansion based methods, our new CIs achieve the
desired coverage probability in a wide variety of DGPs (unlike most other methods)
while usually being the shortest among those CIs also achieving the nominal coverage
probability. In the conditional simulations, compared with a bias-corrected local linear
CI, our CI has more robust coverage and often (14/30 cases) shorter length, too. Com-
pared with a bootstrapped local cubic CI, our CI has similar coverage (sometimes better,
sometimes worse) and usually shorter length when both CIs attain the correct coverage
probability. Away from the median, the bootstrap CIs tend to be shorter since they are
symmetric, whereas ours are equal-tailed; i.e., in the tails there is a trade-off between
being short and being equal-tailed. Overall, the L-statistic approach seems to provide
accurate, robust, equal-tailed, short confidence intervals.

We extend the analysis of Deaton and Paxson (1998) to quantile Engel curve dif-
ferences. They consider the theoretical prediction that larger households benefit from
economies of scale for “public” (within a household) goods like housing and utilities, con-
sequently shifting expenditure into private goods like food. Instead of conditional means,
our object of interest is, for example, the difference in median food budget share between
two-adult and one-adult households (with no children) conditional on a value of log to-
tal per capita expenditure (PCE). We use inflation-adjusted20 data from the 2001–2012
U.K. Living Costs and Food Surveys (Office of National Statistics, 2012).21 We com-
pare two-adult (n = 25 648) and one-adult (n = 20 833) households with no children, as
well as two-adult, two-child (n = 7095) and one-adult, one-child (n = 2490) households,
examining food, alcohol, and housing/utilities budget shares.
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Figure 1. Pointwise 90% confidence intervals (connected for visual ease) for conditional
quantile differences in food budget share between households of different size, conditional
on real log total per capita expenditure. Left: two adults minus one adult, no children;
right: two adults/two children minus one adult/one child.

20https://www.ons.gov.uk/generator?format=csv&uri=/economy/inflationandpriceindices/
timeseries/d7bt/mm23/previous/v1

21This is a successor of the Family Expenditure Survey, which Deaton and Paxson (1998) used.
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Figure 1 shows food budget share conditional quantile difference CIs. The right panel,
comparing two-adult/two-child households with one-adult/one-child households, shows
mostly negative differences, consistent with the negative conditional mean differences
found by Deaton and Paxson (1998). Food being a private good seems to be outweighed
by other factors, like the reduced cost of cooking food at home. The left panel compares
two-adult and one-adult childless households, which Deaton and Paxson (1998, p. 910)
noted to be an exception where food share was slightly higher in two-adult than one-
adult households in the UK. Here, the conditional median CIs are consistent with such
a pattern, but the conditional 0.9-quantile difference is still negative. Differences across
PCE are mostly small. There appears to be compression of the upper half of the food
budget share distribution, which we formally examine below. The compression is apparent
in the right panel, too.

Figure 1 also shows that unlike with childless households, there are significant differ-
ences across PCE when comparing two-adult/two-child and one-adult/one-child house-
holds. Specifically, the larger households have much lower food budget shares at lower
levels of total PCE, but this difference attenuates as PCE increases, becoming statis-
tically indistinguishable from zero at the highest PCE. This could be explained by the
single parents (at any PCE) lacking the time and/or family size to make cooking at home
worthwhile, while low-PCE two-adult/two-child households take more advantage of the
lower costs of home food production.
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Figure 2. Pointwise 90% confidence intervals (connected for visual ease) for conditional
quantile differences in alcohol (left) or housing/utilities (right; note different vertical
scaling) budget share between two-adult and one-adult childless households, conditional
on real log total per capita expenditure.

Figure 2 is similar to the left panel of Figure 1, but for alcohol (left) and housing
and utilities (right) instead of food. In line with theory, at any PCE, the larger house-
holds generally have smaller budget shares of housing and utilities (public goods) due to
economies of scale. Consequently, they have room for larger budget shares of alcohol, a
private good. However, there are significant differences across both PCE and quantile in
both graphs.

Figure 3 directly examines differences in conditional interquantile ranges (0.9-quantile
minus median) in food budget share, motivated by the pattern observed in Figure 1. Re-
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Figure 3. Pointwise 90% confidence intervals (connected for visual ease) for conditional
interquantile range (0.9-quantile minus median) differences in food budget share between
households of different size, conditional on real log total per capita expenditure. Left: two
adults minus one adult, no children; right: two adults/two children minus one adult/one
child.

call that naively differencing conditional IQR CIs would produce too conservative (wide)
CIs compared with ours shown here. With exceptions at some PCE levels, most of the CIs
are well below zero, showing that the upper part of the conditional distributions is indeed
compressing. This may be driven partly by a “regression to the mean” phenomenon. The
same compression is seen for alcohol and housing/utilities in Supplemental Appendix
Figure 5.

6. CONCLUSION

For inference on various quantile-based objects of economic interest, we have proposed
confidence intervals that are implemented as functions in R, following the steps detailed in
Supplemental Appendix E. We have characterised the theoretical properties of these new
nonparametric, L-statistic-based, equal-tailed confidence intervals for quantile differences
and interquantile ranges (and differences of linear combinations), as well as confidence
sets for vectors of quantiles, in both unconditional and conditional settings. Simulations
reflect the theoretical accuracy and robustness, showing a favourable combination of
coverage accuracy and length compared with existing methods.

Future research could use our framework to derive confidence intervals with shorter
length rather than the equal-tailed/median-unbiased property. Related work on inference
on distributions and quantile marginal effects is found in Goldman and Kaplan (2016)
and Kaplan (2014), respectively. A formal extension to regression discontinuity as in
the setup of Calonico, Cattaneo, and Titiunik (2014) may also be of interest, as well
as developing closer connections to the literature on nonseparable models. It may also
be possible to apply our unconditional methods to residuals from a local polynomial
estimator, instead of a local constant estimator as in the current paper (implicitly); this
could help reduce bias and boundary effects. Alternatively, one could keep the “local
constant” approach but try to explicitly correct for bias, as Calonico et al. (2017) show
can be more accurate in a local polynomial (mean) regression setting.
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A. PROOFS AND PROOF SKETCHES

We abbreviate Goldman and Kaplan (2017) as GK. For one-sample results, we omit the
X subscript, e.g., writing F (·) instead of FX(·).

First, we introduce notation. The following is one-sample notation; for two-sample
notation, subscript x or y is added to indicate the sample. Vectors are always column
vectors (unless otherwise noted) and in bold, e.g., u = (u1, . . . , uJ )

′.

Instead of (2.5), let the linearly interpolated fractional order statistics be

Q̂L
X(k/(n+ 1)) ≡ X̂L

n:k.

Let the idealised fractional order statistics be

Q̃I
X(k/(n+ 1)) ≡ X̃I

n:k, Q̃I
U (k/(n+ 1)) ≡ Ũ I

n:k.

Also, let

Q̃I
X(·) ≡ QX(Q̃I

U (·)).
Instead of (3.1), we use

uhj (α) ≡ khj (α)/(n+ 1), ulj(α) ≡ klj(α)/(n+ 1). (A.1)

From A2.1, Xi
iid∼ F , so Ui ≡ F (Xi)

iid∼ Unif(0, 1), with order statistics Un:k. Let
u = (u1, . . . , uJ)

′ be a generic vector with all uj ∈ (0, 1). For convenience let u0 ≡ 0 and
uJ+1 ≡ 1. Given u, for all j ∈ {1, 2, . . . , J},

kj ≡ ⌊(n+ 1)uj⌋, ǫj ≡ (n+ 1)uj − kj ,

where the ǫj ∈ [0, 1) are interpolation weights. Let ∆k denote the (J + 1)-vector with
elements ∆kj = kj − kj−1. Let ψ = (ψ1, . . . , ψJ )

′ be a fixed weight vector, and

Y u

j ≡ Un:kj
∼ Beta(kj , n+ 1− kj), Yu ≡ (Y u

1 , . . . , Y
u

J )′,

∆Yu ≡ (Y1, Y2 − Y1, . . . , 1− YJ)
′ ∼ Dirichlet(∆k),

Λu

j ≡ Un:kj+1 − Un:kj
∼ Beta(1, n), Λu ≡ (Λu

1 , . . . ,Λ
u

J )
′,

W
u ≡

√
n

(
J∑

j=1

ψjQ(Y u

j )−
J∑

j=1

ψjQ(uj)

)
, (A.2)

W
u

ǫ,Λ ≡ W
u + n1/2

J∑

j=1

ǫjψjΛ
u

j (Q
′(uj) +Q′′(uj)(Y

u

j − uj)),

where Q(·) = F−1(·) is the quantile function of interest, with first and second derivatives
Q′(·) and Q′′(·), and now α̃ is explicitly written as a function of γ̂. For random variables
with a u superscript like Yu and W

u, if the vector u is clear from context, then the
corresponding superscript may be omitted. The values and distributions of the preceding
variables are all understood to vary with n.

By construction, ∆k is a (J+1)-vector of natural numbers such that
∑J+1

j=1 ∆kj = n+1

and kj =
∑j

i=1 ∆ki. In our applications to quantile inference, minj{∆kj} → ∞, and
moreover all ∆kj ≍ n.

Define Condition ⋆ as satisfied by any value y if and only if

max
j

{n∆k−1/2
j |∆yj −∆kj/n|} ≤ 2 log(n). Condition ⋆
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From GK Lemma 7(i), this implies the same O(log(n)) bound when centring at the mode
or mean of ∆Yj . GK Lemma 7(iv,v) shows that Condition ⋆ is violated with O(n−2)
probability, which is negligible for all our results. Essentially, Condition ⋆ plays the role
of a cruder, weaker (but more broadly applicable in our case) law of iterated logarithm.

The following lemma is also useful, approximating the CI endpoint indices by standard
normal quantiles.

Lemma A.1. Let z1−α denote the (1 − α)-quantile of a standard normal distribution.
From the definitions in (3.1) and (A.1), the values ulj(α) and uhj (α) can be approximated
as

ulj(α) = τj − n−1/2z1−α

√
τj(1− τj)−

2τj − 1

6n
(z21−α + 2) +O(n−3/2),

uhj (α) = τj + n−1/2z1−α

√
τj(1− τj)−

2τj − 1

6n
(z21−α + 2) +O(n−3/2).

Proof: The proof is in GK.

We also use the following result from Theorem 2(ii) of GK, reproduced here for con-

venience. With L0 ≡∑J
j=1 ψjQX(uj), uniformly over u = τ + o(1),

sup
K∈R

∣∣∣∣∣P
(

J∑

j=1

ψjX̂
L
n:(n+1)uj

< L0 + n−1/2K

)
− P

(
J∑

j=1

ψjX̃
I
n:(n+1)uj

< L0 + n−1/2K

)∣∣∣∣∣

= O(n−1). (A.3)

A.1. More general version of Theorem 2.1, with proof

Theorem A.2. Let L0 =
∑J

j=1 ψj(QX(uj) +QY (uj)) and

LL
X ≡

J∑

j=1

ψjX̂
L
n:(n+1)uj

, LI
X ≡

J∑

j=1

ψjX̃
I
n:(n+1)uj

. (A.4)

Defining LL
Y and LI

Y similarly, under Assumptions A2.1 and A2.2, uniformly over u =
τ + o(1),

sup
K∈R

∣∣P(LL
X + LL

Y < L0 + n−1/2K)− P(LI
X + LI

Y < L0 + n−1/2K)
∣∣ = O(n−1).

Proof: As in the proof in GK, we assume that the realised values of all random variables
satisfy Condition ⋆. By application of GK Lemma 7(iv,v) this induces at most O(n−2)
error in our calculations, which is asymptotically negligible.

For any probability distribution G(·) and function h(·),
∣∣∣∣
∫
h(x) dG(x)

∣∣∣∣ ≤ sup
x
|h(x)|,

so, using LL
X ⊥⊥ LL

Y from A2.1,

P(LL
X + LL

Y < K)

=

∫

R

P(LL
Y < K − x) dFLL

X
(x)
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=

∫

R

P(LI
Y < K − x) dFLL

X
(x) +

uniformly O(n−1)︷ ︸︸ ︷
∫

R

uniformly O(n−1) by (A.3)︷ ︸︸ ︷
(P(LL

Y < K − x)− P(LI
Y < K − x)) dFLL

X
(x)

= P(LI
Y + LL

X < K) +O(n−1)

=

∫

R

P(LI
X < K − x) dFLI

Y
(x)

+

uniformly O(n−1)︷ ︸︸ ︷
∫

R

uniformly O(n−1) by (A.3)︷ ︸︸ ︷
(P(LL

X < K − x)− P(LI
X < K − x)) dFLI

Y
(x)+O(n−1)

= P(LI
X + LI

Y < K) +O(n−1)

uniformly over K ∈ R and u = τ + o(1).

A.2. Proof of Theorem 3.1

Proof: Applying (A.3) to get the first equality below, actual CP is

P

({
J⋂

j=1

{Q̂L
X(uhj (α̃/2)) > Q(τj)}

}⋂{ J⋂

j=1

{Q̂L
X(ulj(α̃/2)) < Q(τj)}

})

=

use definition of Q̃I
X(·)︷ ︸︸ ︷

P

({
J⋂

j=1

{Q̃I
X(uhj (α̃/2)) > Q(τj)}

}⋂{ J⋂

j=1

{Q̃I
X(ulj(α̃/2)) < Q(τj)}

})
+O(n−1)

=

=1−α by (3.3)︷ ︸︸ ︷

P

({
J⋂

j=1

{Q̃I
U (u

h
j (α̃/2)) > τj}

}⋂{ J⋂

j=1

{Q̃I
U (u

l
j(α̃/2)) < τj}

})
+O(n−1)

= 1− α+O(n−1).

The application of (A.3) above follows from the Cramér–Wold device.

A.3. Proof of Theorem 3.2 and Theorem A.3 (from main appendix)

We first state (and then prove) Theorem A.3, which is a more general version of Theo-
rem 3.2. TheX subscript is dropped for notational simplicity. LetQ(τ ) ≡ (Q(τ1), . . . , Q(τJ ))

′,

and similarly for Q′(τ ), Q̂′(τ ), etc.
For quantile index vector τ ∈ (0, 1)J and weights ψ ∈ R

J , we construct a CI for

D =
∑J

j=1 ψjQ(τj). The theorem stated in the main text is for the special case with
ψ = (−1, 1)′ and τ = (0.25, 0.75)′.

Using (A.1), let

uHj (α) ≡ 1{ψj > 0}uhj (α) + 1{ψj < 0}ulj(α),
uLj (α) ≡ 1{ψj > 0}ulj(α) + 1{ψj < 0}uhj (α).

(A.5)

c© Royal Economic Society 2017



24 M. Goldman and D. M. Kaplan

In the notation of (A.5), the lower one-sided CI for D is
(
−∞,

J∑

j=1

ψjQ̂
L
X(uHj (α̃))

)
, (A.6)

where α̃ implicitly depends on the Q̂′(τj) and satisfies

1− α = P

(
J∑

j=1

ψjQ̂′(τj)(Q̃
I
U (u

H
j (α̃))− τj) > 0

)
. (A.7)

For an upper one-sided CI, the analogues of (A.6) and (A.7) are
(

J∑

j=1

ψjQ̂
L
X(uLj (α̃)),∞

)
, 1− α = P

(
J∑

j=1

ψjQ̂′(τj)(Q̃
I
U (u

L
j (α̃))− τj) < 0

)
. (A.8)

Theorem A.3. Let A2.1 and A2.2 hold.

(a) The one-sided lower and upper CIs in (A.6) and (A.8) have CPE of order O(n−1/2 log(n))

if all Q̂′(τj) are estimated by (3.5) with smoothing parameters mj having rate larger
than n1/2 and smaller than n3/4.

(b) The two-sided CI formed by the intersection of upper and lower one-sided 1− α/2

CIs has CPE of order O(n−2/3 log(n)) if all Q̂′(τj) are estimated by (3.5) with
mj ≍ n2/3.

(c) The asymptotic probabilities of excluding Dn = ψ′(Q(τ )+κn−1/2) from lower one-
sided (l), upper one-sided (u), and equal-tailed two-sided (t) CIs (i.e., asymptotic
power of the corresponding hypothesis tests) are

P l
n(Dn) → Φ(zα + S), Pu

n(Dn) → Φ(zα − S), Pt
n(Dn) → Φ(zα/2 + S) + Φ(zα/2 − S),

where S ≡ ψ′κ/
√

Vψ and

Vψ ≡
J∑

i=1

J∑

j=1

ψiψj
min{τi, τj} − τiτj
f(Q(τi))f(Q(τj))

. (A.9)

Proof: We focus on the lower one-sided CI first; the upper one-sided results are entirely
parallel.

To be more explicit about the dependence of α̃ on the nuisance parameter, for a general
value g = (g1, . . . , gJ )

′, let α̃(g) satisfy

1− α = P

(
J∑

j=1

ψjgj(Q̃
I
U (u

H
j (α̃(g)))− τj) > 0

)
. (A.10)

This is (A.7) with gj replacing Q̂′(τj). Correspondingly, we write û for the vector of
quantile indices selected to form CI endpoints given estimates

γ̂ ≡ Q̂′(τ ) ≡ (Q̂′(τ1), . . . , Q̂′(τJ ))
′, (A.11)

and uH
0 is the vector of quantile indices that would be selected if the true

γ ≡ Q′(τ ) (A.12)
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were known. Note that (A.10) is invariant to scaling g by a constant scalar, so we could
also divide by the first element in the vector to normalise the first element to be one,
e.g., γ = (1, Q′(τ2)/Q′(τ1), . . . , Q′(τJ)/Q′(τ1))′, which will be used later. For the lower
one-sided case,

û
H ≡ {uHj (α̃(γ̂))}Jj=1 and uH

0 ≡ {uHj (α̃(γ))}Jj=1,

and objects with L superscripts can be defined similarly for the upper one-sided case.

The CP of the lower one-sided CI can be decomposed into different components. We
use notation from (A.2). We also use an implication of GK Lemma 8(i). Translating to
our present context, that lemma states

|
√
nψ′(Q(Q̃I

U (û
H))−Q(ûH))−W

û
H

C,Λ| = O(n−3/2(log(n))3),

so for any t ∈ R,

P(
√
nψ′(Q(Q̃I

U (û
H))−Q(ûH)) > t and W

û
H

C,Λ < t)

=

use MVT︷ ︸︸ ︷
P(t−O(n−3/2(log(n))3) <W

û
H

C,Λ < t)

≤ O(n−3/2(log(n))3)

=O(1) by GK Lemma 8(ii)︷ ︸︸ ︷
sup

w∈[t−O(n−3/2(log(n))3),t]

f
WûH

C,Λ
(w)

= O(n−3/2(log(n))3),

and switching the < and > leaves the rate unchanged. Thus,

|P(
√
nψ′(Q(Q̃I

U (û
H))−Q(ûH)) > t)− P(Wû

H

C,Λ > t)|

≤

=O(n−3/2(log(n))3)︷ ︸︸ ︷
|P(

√
nψ′(Q(Q̃I

U (û
H))−Q(ûH)) > t and W

û
H

C,Λ < t)|

+

=O(n−3/2(log(n))3)︷ ︸︸ ︷
|P(

√
nψ′(Q(Q̃I

U (û
H))−Q(ûH)) < t and W

û
H

C,Λ > t)|
= O(n−3/2(log(n))3). (A.13)

The lower one-sided CP is

P(ψ′Q̂L
X(ûH) > ψ′Q(τ ))

=

by (A.3)︷ ︸︸ ︷
P(ψ′Q̃I

X(ûH) > ψ′Q(τ )) +O(n−1)

= P(
√
nψ′(Q(Q̃I

U (û
H))−Q(ûH)) >

√
nψ′(Q(τ )−Q(ûH))) +O(n−1)

= P(Wû
H

C,Λ >
√
nψ′(Q(τ )−Q(ûH)))

+ (P(
√
nψ′(Q(Q̃I

U (û
H))−Q(ûH)) >

√
nψ′(Q(τ )−Q(ûH)))

− P(Wû
H

C,Λ >
√
nψ′(Q(τ )−Q(ûH))))

+O(n−1)

= P(W
u

H
0

C,Λ >
√
nψ′(Q(τ )−Q(uH

0 )))
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+

Eh︷ ︸︸ ︷
P(Wû

H

C,Λ >
√
nψ′(Q(τ )−Q(ûH)))− P(W

u
H
0

C,Λ >
√
nψ′(Q(τ )−Q(uH

0 )))

+

by (A.13)︷ ︸︸ ︷
(O(n−3/2(log(n))3))+O(n−1)

=

=1−α by (A.10)︷ ︸︸ ︷

P

(
J∑

j=1

ψjγj(Q̃
I
U (u

H
0,j)− τj) > 0

)
+Th + Eh +O(n−1), (A.14)

where

Th = P(W
u

H
0

C,Λ >
√
nψ′(Q(τ )−Q(uH

0 )))− P

(
J∑

j=1

ψjγj(Q̃
I
U (u

H
0,j)− τj) > 0

)

=

by (A.13)︷ ︸︸ ︷
P(

√
nψ′(Q(Q̃I

U (u
H
0 ))−Q(uH

0 )) >
√
nψ′(Q(τ )−Q(uH

0 ))) +O(n−3/2(log(n))3)

− P

(
J∑

j=1

ψjγj(Q̃
I
U (u

H
0,j)− τj) > 0

)

= P(
√
nψ′(Q(Q̃I

U (u
H
0 ))−Q(τ )) > 0)− P

(
J∑

j=1

ψjγj(Q̃
I
U (u

H
0,j)− τj) > 0

)

+O(n−3/2(log(n))3)

= P

(
J∑

j=1

ψj(Q(Q̃I
U (u

H
0,j))−Q(τj)) > 0

)
− P

(
J∑

j=1

ψjQ
′(τj)(Q̃

I
U (u

H
0,j)− τj) > 0

)

+O(n−3/2(log(n))3), (A.15)

Eh = E[P(Wû
H

C,Λ >
√
nψ′(Q(τ )−Q(ûH)) | γ̂)− P(W

u
H
0

C,Λ >
√
nψ′(Q(τ )−Q(uH

0 )) | γ̂)].
(A.16)

The term Th captures the error in the first-order Taylor approximation of Q(Q̃I
U (u

H
0,j))−

Q(τj), and Eh captures estimation error in γ̂. The upper one-sided derivation yields
similar terms, denoted Tl and El.

The proof of part (a) follows by applying Lemmas A.4 and A.5, which respectively
have Th = O(n−1/2 log(n)) and Eh = O(m−1 log(n) + (m/n)2) for common smoothing
parameter rate m (so mj ≍ m for all j), and similarly for Tl and El, which correspond
to the upper one-sided CI. Plugging these into (A.14) gives one-sided CPE equal to
O(n−1/2 log(n)) + O(m−1 log(n) + (m/n)2). As long as n1/2 . m . n3/4, the dominant
CPE term is order O(n−1/2 log(n)).

The proof of part (b) also follows by applying Lemmas A.4 and A.5, which also give
Th + Tl = O(n−1(log(n))2). Thus, CPE is O(n−1(log(n))2) + O(m−1 log(n) + (m/n)2).
Now, the second term dominates, and it is minimised by m ≍ n2/3, leaving CPE of order
O(n−2/3 log(n)).

The proof of part (c) remains. One-sided power against H0 : Dn = ψ′(Q(τ )+κn−1/2)
with ψ′κ > 0 is the probability that Dn is not contained in the lower one-sided CI. Below,
ũj comes from the mean value theorem and lies between τj and uHj . Since uHj → τj
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by Lemma A.1, ũj → τj , so for large enough n, all ũj lie within an arbitrarily small
neighbourhood of τj and thus A2.2 uniformly bounds Q′′(ũj) = O(1). The CI exclusion
probability is

P l
n(Dn) = P

(
J∑

j=1

ψj(Q̂
L
X(uHj (α̃j))−Q(τj)) < n−1/2ψ′κ

)

= P(ψ′Q̂L
X(uH(α̃))−ψ′Q(uH(α̃)) < n−1/2ψ′κ−ψ′(Q(uH(α̃))−Q(τ )))

= P(
√
nψ′(Q̂L

X(uH(α̃))−Q(uH(α̃)))

< ψ′κ−
√
n

J∑

j=1

ψj(Q
′(τj)(u

H
j − τj) + (1/2)

=O(1)︷ ︸︸ ︷
Q′′(ũj)

=O(n−1) by Lemma A.1︷ ︸︸ ︷
(uHj − τj)

2 ))

=

by GK Lemma 8︷ ︸︸ ︷

Φ

(∑J
j=1 ψjκj − ψjQ

′(τj)

apply Lemma A.1︷ ︸︸ ︷√
n(uHj (α̃j)− τj)+O(n−1/2)
√
V̂ψ

)
+O(n−1/2(log(n))3)

= Φ

(
ψ′κ√
Vψ

−

→z1−α to control size when κ=0︷ ︸︸ ︷
1√
Vψ

J∑

j=1

ψjQ
′(τj)z1−α̃j

√
τj(1− τj)+O(n−1/2)

)
+O(n−1/2(log(n))3)

→ Φ

(
ψ′κ√
Vψ

− z1−α

)
= Φ

(
ψ′κ√
Vψ

+ zα

)
,

where

V̂ψ ≡
J∑

i=1

J∑

j=1

ψiψj

min{uHi (α̃i), u
H
j (α̃j)} − uHi (α̃i)u

H
j (α̃j)

f(Q(uHi (α̃i)))f(Q(uHj (α̃j)))
→Vψ.

These results are invariant to choosing a single α̃ or different α̃j because the term
involving the α̃j must equal zα in order to control size. In the special case ψ = 1 for a
single quantile, then α̃ = α, and the result reduces to the result in GK Theorem 4.

The upper one-sided case follows similarly.
For the two-sided case, since the two-sided CI is the intersection of the upper and lower

one-sided 1− α/2 CIs, the exclusion probability is

Pt
n(Dn) = P

(
Dn 6∈

[
J∑

j=1

ψjQ̂
L
X(uLj (α̃/2)),

J∑

j=1

ψjQ̂
L
X(uHj (α̃/2))

])

=

Pl
n(Dn) with α/2︷ ︸︸ ︷

P

(
J∑

j=1

ψjQ̂
L
X(uHj (α̃/2)) < Dn

)
+

Pl
n(Dn) with α/2︷ ︸︸ ︷

P

(
J∑

j=1

ψjQ̂
L
X(uLj (α̃/2)) > Dn

)

→ Φ

(
zα/2 +

ψ′κ√
Vψ

)
+Φ

(
zα/2 −

ψ′κ√
Vψ

)
.

A.3.1. CPE from Taylor Approximations: Th, Tl
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Lemma A.4. Under the assumptions of Theorem A.3, the term Th from (A.14) is of
order O(n−1/2 log(n)), and similarly Tl = O(n−1/2 log(n)) for the corresponding upper
one-sided term. Additionally, Th + Tl = O(n−1(log(n))2).

A sketch of the proof follows; the full proof is in the supplemental appendix. The
intuition is that we are computing the remainder term from a linear approximation of
the quantile function, as described in the main text. Because uH0,j = τj + O(n−1/2) by

Lemma A.1, the quadratic remainder term can be shown to be nearly O(n−1/2), using the
Assumption A2.2 bound on quantile function derivatives uniformly over a neighbourhood
of τj . For the two-sided result, the upper and lower (Th and Tl) n

−1/2 terms cancel due
to (approximate) symmetry: symmetry of the asymptotic normal distribution of certain
random variables, and symmetry of the n−1/2 term in Lemma A.1. This leaves a nearly
O(n−1) remainder.

Consider Th, with uH0,j = uHj (α̃(γ0)). The relevant Taylor expansion is

Q(Q̃I
U (u

H
0,j))−Q(τj) = Q′(τj)(Q̃

I
U (u

H
0,j)− τj) +

1

2
Q′′(τj)(Q̃

I
U (u

H
0,j)− τj)

2

+

=O(n−3/2(log(n))3/2)︷ ︸︸ ︷

1

6

=O(1) uniformly by A2.2︷ ︸︸ ︷
Q′′′(ũj)

=O(n−3/2(log(n))3/2)︷ ︸︸ ︷
(Q̃I

U (u
H
0,j)− τj)

3 ,

(A.17)

where ũj → τj since uH0,j → τj and thus A2.2 applies. The log(n) terms arise from
applying Condition ⋆ to get O(·) instead of Op(·) bounds on terms; the probability of
the corresponding O(·) bounds not uniformly holding is negligible. In sum, the linear
approximation captures the first term in (A.17), while the third is smaller-order, so the
question becomes: what is the effect of ignoring the quadratic term?

Using (A.17), we can (eventually) decompose

Th = TH,1 − TH,2 +O(n−1(log(n))3/2),

TH,1 ≡ P

(
J∑

j=1

ψjQ
′(τj)(∆

H
j +DH

j ) > −n
−1/2

2

J∑

j=1

ψjQ
′′(τj)(∆

H
j +DH

j )2

)
,

TH,2 ≡ P

(
J∑

j=1

ψjQ
′(τj)(∆

H
j +DH

j ) > 0

)
,

∆H
j ≡

√
n(Q̃I

U (u
H
j (α̃))− uHj (α̃)),

DH
j ≡

√
n(uHj (α̃)− τj).

The overall Th captures the effect of the additional n−1/2 term after the > in TH,1.

From equation (A.4) in GK Lemma 7(iii), the PDFs of the corresponding vectors ∆H ≡
(∆H

1 , . . . ,∆
H
J )′ and ∆L ≡ (∆L

1 , . . . ,∆
L
J )

′ are asymptotically normal, which makes the
probabilities easier to simplify and compare. Further, since both uHj → τj and uLj → τj ,
the two vectors have the same first-order asymptotic distribution. It also helps to restrict
attention to the case where all |∆j | <

√
2 log(n), which has negligible probability of

being violated.

In the one-sided case, Th is essentially the probability that a (non-degenerate) nor-
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mal random variable falls in an interval of length O(n−1/2 log(n)), which is the same
O(n−1/2 log(n)).

The two-sided result requires more precision. We solve for the roots of the quadratic
inside TH,1, seeing it as a function of ∆H

1 conditional on other ∆H
j , j = 2, . . . , J . One root

is so large that the probability of exceeding it is negligible, so it reduces to the probability
of a single inequality. The conditional probability (given the other ∆H

j ) can be written

out, and then integrated over the multivariate normal joint distribution of (∆H
2 , . . . ,∆

H
J ).

Parallel steps apply to TL,1, yielding a very similar integral. When adding Th + Tl, the
symmetry from Lemma A.1 and the symmetry of the normal PDF cause the n−1/2 terms
to cancel, leaving only the nearly O(n−1) remainder terms.

A.3.2. CPE from nuisance parameter estimation error: Eh, El

Lemma A.5. Under the assumptions of Theorem A.3, Eh = O(m−1 log(n)+(m/n)2) in
(A.14), and similarly for the corresponding upper one-sided term, El = O(m−1 log(n) +
(m/n)2), where m is the common rate of smoothing parameters, mj ≍ m for all j.

A sketch of the proof follows; the full proof is in the supplemental appendix. The
general idea is to apply the mean value theorem repeatedly, where we can compute
bounds on the derivatives (and other terms) and eventually pull out Q̂′(τ )−Q′(τ ), the
nuisance parameter estimation error. The eventual result is essentially the sum of the bias
and variance of the sparsity estimator, Q̂′(τ ), which are given in Bloch and Gastwirth
(1968). The smoothing parameter m affects the bias-variance tradeoff; larger m (more
smoothing) decreases variance but increases bias, and vice-versa.

First, decompose

Eh = Eγ̂ [P(W
û

H

C,Λ >
√
nψ′(Q(τ )−Q(ûH)) | γ̂)− P(W

u
H
0

C,Λ >
√
nψ′(Q(τ )−Q(uH

0 )) | γ̂)]

= Eγ̂ [P(W
u

H
0

C,Λ <
√
nψ′(Q(τ )−Q(uH

0 )) | γ̂)− P(Wû
H

C,Λ <
√
nψ′(Q(τ )−Q(ûH)) | γ̂)]

=

E1

h︷ ︸︸ ︷
Eγ̂ [P(W

û
H

C,Λ <
√
nψ′(Q(τ )−Q(uH

0 )) | γ̂)− P(Wû
H

C,Λ <
√
nψ′(Q(τ )−Q(ûH)) | γ̂)]

+

E2

h︷ ︸︸ ︷
Eγ̂ [P(W

u
H
0

C,Λ <
√
nψ′(Q(τ )−Q(uH

0 )) | γ̂)− P(Wû
H

C,Λ <
√
nψ′(Q(τ )−Q(uH

0 )) | γ̂)] .

It can be shown that E2
h is smaller-order (i.e., not the rate-limiting term), so here we

focus on E1
h. The intuition for E2

h being small is that ûHj and uH0,j are very close to each
other, as will be seen below.

For E1
h, GK Lemma 8(ii) is helpful: uniformly over any u = τ +o(1), which includes all

possible û
H = τ +O(n−1/2), the PDF of Wû

H

C,Λ is approximately (up to a multiplicative

error) that of a mean-zero normal distribution with variance V û
H

ψ , which is the same as

Vψ in the statement of the theorem but with τ replaced by û
H . This V û

H

ψ is then approx-

imated by V0,H
ψ , based on uH

0 . Using this PDF approximation and other approximations,

given a value of ûH , the mean value theorem gives

E1
h(û

H) =

∫ √
nψ′(Q(τ )−Q(uH

0
))

√
nψ′(Q(τ )−Q(ûH))

f
WûH

C,Λ
(w) dw
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= (
√
nψ′(Q(τ )−Q(uH

0 ))−
√
nψ′(Q(τ )−Q(ûH)))f

WûH

C,Λ
(w̃)

=
√
nψ′(Q(ûH)−Q(uH

0 ))

normal PDF approximation︷ ︸︸ ︷
φV0,H

ψ

(w̃)(1 +O(n−1/2(log(n))3))

=
√
nψ′

by (A.18) and (A.19)︷ ︸︸ ︷
(Q̂′(τ )−Q′(τ ))O(1)O(n−1/2)O(1)φV0,H

ψ

(w̃)(1 +O(n−1/2(log(n))3))

= ψ′(Q̂′(τ )−Q′(τ ))φV0,H
ψ

(w̃)(1 +O(n−1/2(log(n))3))

The following approximations were used above. Using mean value expansions where ã is
between α̃(Q̂′(τ )) and α̃(Q′(τ )), and each element of Q̃′(τ ) is between the corresponding
elements of the true and estimated vectors, using uh′j (ã) ≡ d

dα̃u
h
j (α̃) = O(n−1/2),

ûhj − uh0,j ≡ uhj (α̃(Q̂
′(τ )))− uhj (α̃(Q

′(τ )))

= (α̃(Q̂′(τ ))− α̃(Q′(τ )))uh′j (ã)

=

=O(m−1/2 log(n)+m/n)︷ ︸︸ ︷
(Q̂′(τ )−Q′(τ ))′

=O(1)︷ ︸︸ ︷
α̃′(Q̃′(τ ))

=O(n−1/2)︷ ︸︸ ︷
uh′j (ã)

= O(m−1/2n−1/2 log(n) +mn−3/2),

(A.18)

Q(ûhj )−Q(uh0,j) = (ûhj − uh0,j)Q
′(ũ) = O(m−1/2n−1/2 log(n) +mn−3/2), (A.19)

where ũj is between ûhj and uh0,j and thus ũj → τj , so for large enough n, Q′(ũ) is

uniformly bounded by A2.2; and similarly with ûlj and ul0,j . The bound on Q̂′(τ )−Q′(τ )
is under Condition ⋆. The bound on the derivative of α̃ as a function of the sparsity
estimator seems intuitive since α̃ varies over a subset of (0, 1) while the argument varies
over (0,∞), but it takes much work using the implicit function theorem to show formally.
The bound on the derivative of uhj as a function of α̃ is also intuitive since uh = τ +

n−1/2Φ−1(1− α̃)
√
τ(1− τ) +O(n−1) from Lemma A.1.

With some additional work,

E1
h = O(E[

A︷ ︸︸ ︷
(1 +O(m−1/2 log(n) +mn−1))

B︷ ︸︸ ︷
(Q̂′(τ )−Q′(τ ))]).

Now,

E[AB] = Cov(A,B) + E[A]E[B],

|Cov(A,B)| = |Corr(A,B)
√

Var(A)Var(B)| ≤
√
Var(A)Var(B).

From equations (2.5) and (2.6) in Bloch and Gastwirth (1968, p. 1084), E[B] = O(m2/n2)
and Var(B) = O(m−1). Also, E[A] = O(1) and Var(A) = O(m−1(log(n))2 +m2n−2), so

|E[A])| =
√
O(m−1(log(n))2 +m2n−2)O(m−1) +O(1)O(m2/n2)

= O(m−1 log(n) +m2/n2).

Using m ≍ n2/3 attains the (nearly) minimum rate of O(n−2/3 log(n)). With any n1/2 .

m . n3/4, the rate is no greater than Th = O(n−1/2 log(n)).
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A.4. Theorem for CI for difference of linear combination of quantiles (and QD)

We first state (and then prove) Theorem A.6, where the object of interest is

D =

J∑

j=1

ψj(QY (τj)−QX(τj)).

In the special case J = 1, D is the τ -QD. If ψ = (−1, 1)′, then D is a difference of IQRs.
For a lower one-sided CI, using (2.7) and (A.5), α̃ satisfies

1−α = P

(
J∑

j=1

ψj(Q̂′
Y (τj)(Q̃

I
Uy

(uHy,j(α̃))−τj)−Q̂′
X(τj)(Q̃

I
Ux

(uLx,j(α̃))−τj)) > 0

)
. (A.20)

The 1− α CI is then
(
−∞,

J∑

j=1

ψj(Q̂
L
Y (u

H
y,j(α̃))− Q̂L

X(uLx,j(α̃)))

)
. (A.21)

For an upper one-sided CI, the analogues of (A.20) and (A.21) are

1− α = P

(
J∑

j=1

ψj(Q̂′
Y (τj)(Q̃

I
Uy

(uLy,j(α̃))− τj)− Q̂′
X(τj)(Q̃

I
Ux

(uHx,j(α̃))− τj)) < 0

)
,

(A.22)
(

J∑

j=1

ψj(Q̂
L
Y (u

L
y,j(α̃))− Q̂L

X(uHx,j(α̃))),∞
)
. (A.23)

Theorem A.6. Let Assumptions A2.1 and A2.2 hold.

(a) The one-sided CIs in (A.21) and (A.23) both have CPE of order O(n−1/2 log(n)) if

all Q̂′
X(τj) and Q̂′

Y (τj) are estimated by (3.5) with smoothing parameters mx,j and
my,j having rates larger than n1/2 and smaller than n3/4.

(b) Two-sided CIs, formed by the intersection of upper and lower one-sided 1 − α/2

CIs, have CPE of order O(n−2/3 log(n)) if all Q̂′
X(τj) and Q̂′

Y (τj) are estimated by
(3.5) with mx,j ≍ n2/3 and my,j ≍ n2/3.

(c) The asymptotic probabilities of excluding Dn = ψ′(QY (τ )−QX(τ )+κn
−1/2
y ) from

lower one-sided (l), upper one-sided (u), and equal-tailed two-sided (t) CIs (i.e.,
asymptotic power of the corresponding hypothesis tests) are

P l
n(Dn) → Φ(zα + S), Pu

n(Dn) → Φ(zα − S), Pt
n(Dn) → Φ(zα/2 + S) + Φ(zα/2 − S),

where S ≡ ψ′κ/
√

Vψ,x + δ2Vψ,y, and Vψ,x and Vψ,y are as defined in Theorem A.3
for the X and Y population distributions, respectively.

The proof closely parallels that of Theorem A.3, so we defer it to the supplemental
appendix. The overall CPE is again decomposed into a term from using a linear Taylor
approximation, a term from the estimation error of the nuisance parameter, and a smaller-
order remainder; the same rates apply to each. Since the second sample is assumed
independent of the first, there is no additional dependence structure to consider, just two
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independent Dirichlet distributions. It is more cumbersome due to having more terms
and different sample sizes, but the intuition and strategy are the same.

A.5. Proof of Theorem 4.1

Proof: This proof shares the same structure as that of GK Theorem 6, with four main
components needed. To establish the order of the CPE term due to applying the uncon-
ditional method to the local sample (i.e., CPEU), first, it must be shown that Nn ≍ nbd

almost surely, and second, A2.2 must be satisfied uniformly by the “local PDF” from
which the local sample is drawn (which changes with n). Third, the order of the CPE
due to bias (i.e., CPEBias) is needed. Fourth, the sum CPEU+CPEBias can be minimised
to derive the CPE-optimal bandwidth rate and corresponding CPE. Steps two and three
can be taken directly from the proof of GK Theorem 6; we comment on them but refer
to the other paper for details. As in Chaudhuri (1991), we consider a deterministic band-
width sequence, leaving treatment of a random (data-dependent) bandwidth to future
work.

First, although it is random, the local sample size Nn is almost surely of order nbd

(exactly, not justO(nbd)), as shown in the proof of GK Theorem 6, following the argument
in Chaudhuri (1991, proof of Thm. 3.1, p. 769). Specifically, using Bernstein’s Inequality
and the Borel–Cantelli Lemma, it can be shown that there exist constants c1 and c2 such
that c1nb

d ≤ Nn ≤ c2nb
d for large enough n with probability one. For joint or CIQR

inference, because the same bandwidth is used at each quantile, there is a single local
sample and single Nn, so the prior result in Chaudhuri (1991) applies directly. For CQD
inference, there are two local samples, so some additional arguments are required. For
the Ti = 0 subsample, define the event An0 ≡ {c01nbd0 ≤ Nn0 ≤ c02nb

d
0}, and similarly

let An1 ≡ {c11nbd1 ≤ Nn1 ≤ c12nb
d
1}. Let An ≡ An0 ∩ An1. We want to show that

with probability one, An occurs for all n larger than some value n0, i.e., P(lim inf An) =
1. The Borel–Cantelli Lemma gives this conclusion if

∑∞
n=1(1 − P(An)) < ∞. Using

probability/set identities and inequalities, writing Ac for the complement of event A,

P(An0 ∩An1) = 1−
≤P(Ac

n0
)+P(Ac

n1
)︷ ︸︸ ︷

P(Ac

n0 ∪Ac

n1) ≥ 1− P(Ac

n0)− P(Ac

n1)

= 1− (1− P(An0))− (1− P(An1))

= P(An0) + P(An1)− 1. (A.24)

The probabilities in the RHS of (A.24) are bounded by the application of Bernstein’s
Inequality in Chaudhuri (1991). The specific constants involved will change since P(Ti =
1) now enters the binomial probability parameter, but since P(Ti = 1) is fixed and strictly
between zero and one (from A4.1), the rates are the same. So, there exist constants
c03, c04, c13, c14 > 0 such that for all n,

P(An0) ≥ 1− c03 exp(−c04nbd0), P(An1) ≥ 1− c13 exp(−c14nbd1),
1− P(An0) ≤ c03 exp(−c04nbd0), 1− P(An1) ≤ c13 exp(−c14nbd1),

(A.25)

Altogether,

∞∑

n=1

(1− P(An)) =

∞∑

n=1

(1−
use (A.24)︷ ︸︸ ︷

P(An0 ∩An1))
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≤
∞∑

n=1

(1− (P(An0) + P(An1)− 1))

=

∞∑

n=1

(

use (A.25)︷ ︸︸ ︷
1− P(An0)+

use (A.25)︷ ︸︸ ︷
1− P(An1))

≤
∞∑

n=1

c03 exp(−c04nbd0) +
∞∑

n=1

c13 exp(−c14nbd1)

= c03

∞∑

n=1

exp(−c04

&(log(n))2 by A4.6︷︸︸︷
nbd0 ) + c13

∞∑

n=1

exp(−c14

&(log(n))2 by A4.6︷︸︸︷
nbd1 )

≤ c03

∞∑

n=1

exp(−c04(log(n))2) + c13

∞∑

n=1

exp(−c14(log(n))2),

and both sums are finite by comparison with

∞∑

n=1

exp(−2 log(n)) =
∞∑

n=1

exp(log(n−2)) =
∞∑

n=1

n−2 = π2/6.

This means the summability condition from the Borel–Cantelli Lemma is satisfied, so as
desired P(lim inf An) = 1, and Nn0 ≍ nbd0 and Nn1 ≍ nbd1, where b0 and b1 are the same
rate by assumption.

Second, in addition to having Nn instead of n, having a local distribution that changes
with n is another difference with the unconditional setting. Specifically, these local PDFs
must uniformly satisfy A2.2 for large enough n. This is shown to be true in the proof
of GK Theorem 6, by using b → 0 (and thus Cb → {w0}) from A4.6 along with the
assumed smoothness from A4.2–A4.5. For CQD inference, since the same assumptions
hold conditional on T = 0 and T = 1 alike, the same argument applies. Consequently, the
CPE due to application of the unconditional method to the local sample (CPEU in the
main text) is obtained by replacing n with nbd in the unconditional results. For example,
two-sided QD or IQR CIs have unconditional CPE of order O(n−2/3 log(n)); for CQD
and CIQR, replacing n with Nn ≍ nbd leaves O((nbd)−2/3 log(nbd)), where b0, b1 ≍ b is
the common bandwidth rate for the CQD case.

Third, the other component of overall CPE is from bias. In the proof of GK Theorem 6,

this is O(N
1/2
n b2) = O(n1/2b2+d/2): the bias is O(b2), the CI endpoint PDF is proportional

to N
1/2
n , and (using the MVT) their product gives the order of CPE due to bias. For

two-sided inference on a single conditional quantile, GK show that some cancellation
occurs to reduce the order of magnitude, but this does not seem to occur for CQD or
CIQR inference. If such cancellation did occur, then CPE would be even better (smaller)
than in the results given here.

Fourth, we derive the CPE-optimal bandwidth rates and optimal CPE rates for all
conditional methods. For joint inference on multiple conditional quantiles, whether one-
sided or two-sided, the CPE from Theorem 3.1 is O(N−1

n ), so setting CPEU = CPEBias

gives

N−1
n ≍ N1/2

n b2 =⇒ (nbd)3/2 ≍ b−2 =⇒ b∗ ≍ n−3/(4+3d),
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and the overall CPE is

O((n(b∗)d)−1) = O((n1−3d/(4+3d))−1) = O(n−4/(4+3d)).

For one-sided CIQR or CQD inference (or more general linear combinations or differences

thereof), the CPE from Theorem A.3 or Theorem A.6 is O(N
−1/2
n log(Nn)). Ignoring the

log(Nn) for simplicity,

N−1/2
n ≍ N1/2

n b2 =⇒ (nbd)−1 ≍ b2 =⇒ b∗ ≍ n−1/(2+d),

and the overall CPE is O((n(b∗)d)−1/2 log(n(b∗)d)) = O(n−1/(2+d) log(n)). For two-sided
CIQR or CQD inference (or the more general versions), the CPE from Theorem A.3 or

Theorem A.6 is O(N
−2/3
n log(Nn)). Ignoring the log(Nn) for simplicity,

N−2/3
n = N1/2

n b2 =⇒ b∗ ≍ n−7/(12+7d),CPE = O(n−8/(12+7d) log(n)).

B. NUISANCE PARAMETER ESTIMATION AND PLUG-IN BANDWIDTH
DETAILS

B.1. Nuisance parameter estimation

Selection of α̃ in Sections 3.2 and 3.3 requires preliminary estimation of derivatives of
the quantile function. We recommend the “quantile spacing” estimator first proposed by
Siddiqui (1960), given earlier in (3.5). In practice, results are often very similar when
using fractional order statistics in (3.5) instead of rounding to integers, or even using a
kernel density estimator instead, but we do not explore those here. Below we derive a
rule for bandwidth selection that ensures an optimal order of CPE, but our results are
also not particularly sensitive to the bandwidth choice.

Suppressing the j subscript for simplicity, the smoothing parameter rate m ≍ n2/3

gives the most accurate CIs (up to log(n) terms) because the orders of Eh and El are

O(m−1 log(n) +m2/n2), where m−1 is the order of the variance of Q̂′(τj) and m2/n2 is
the order of its bias. Ideally, we could derive more precise expressions of Eh and El that
could then be minimised over m; for now, we just consider rates.

From (2.5) and (2.6) in Bloch and Gastwirth (1968), up to smaller-order terms,

Var(Q̂′(τ))
.
= m−1 (Q

′(τ))2

2
, Bias(Q̂′(τ))

.
= (m/n)2

Q′′′(τ)

6
.

One way to select m with the CPE-optimal rate is to minimise the sum of the bias and
variance of Q̂′(τj)/Q′(τj). The variance, bias, and corresponding FOC are

Var(Q̂′(τ)/Q′(τ)) =
Var(Q̂′(τ))

(Q′(τ))2
.
= m−1 (Q′(τ))2

2(Q′(τ))2
= 1/(2m),

Bias(Q̂′(τ)/Q′(τ)) =
Bias(Q̂′(τ))

Q′(τ)
.
= (m/n)2

Q′′′(τ)

6Q′(τ)
,

0 =
∂

∂m
((m/n)2

Q′′′(τ)

6Q′(τ)
+ (1/2)m−1) = 2m/n2

Q′′′(τ)

6Q′(τ)
− (1/2)m−2,

=⇒ m3 = n2
3Q′(τ)

2Q′′′(τ)
.

From here, we use a “Gaussian plug-in” approach like in the rule-of-thumb bandwidth
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of Silverman (1986), i.e., we compute and plug in the quantile derivatives for a N(µ, σ2)
distribution (shown explicitly in the supplemental appendix). Thanks to having used

Q̂′(τj)/Q′(τj) instead of Q̂′(τj), the result is invariant to σ (as well as µ):

m = n2/3
(
1.5

(φ(Φ−1(τ)))2

1 + 2(Φ−1(τ))2

)1/3

. (B.1)

This is the bandwidth we use in our code, after replacing m with mj and τ with τj .

B.2. Plug-in bandwidth for conditional inference

The following suggestions are all implemented in the code available on the journal’s (or
latter author’s) website.

Since analytic expressions for unconditional CPE do not exist for the methods con-
sidered here, we recommend multiplying the single quantile plug-in bandwidth in GK
Section 4.3 by the appropriate power of n to achieve the optimal rate from Theorem 4.1.
Note that the bandwidth values in GK are only for d = 1; only rates are given for d > 1.

The one-sided rate for joint inference over multiple quantiles is the same as for a
single quantile. For simplicity, we suggest a common bandwidth for all quantiles, using
τ = argminτj τj(1 − τj) in the single quantile plug-in bandwidth, and we suggest using
α instead of α̃ in the plug-in bandwidth formula; neither choice affects the asymptotic
bandwidth rate. For two-sided joint inference, we recommend further multiplying the
bandwidth by n−2/((2+d)(4+3d)) to get the optimal rate.

For one-sided inference on linear combinations of quantiles, we recommend multiply-
ing the single quantile plug-in bandwidth (in GK Section 4.3) by n to the power of
8/((12 + 7d)(4 + 3d)) to get a bandwidth with the optimal rate. This time α̃ ≥ α, so we
suggest plugging in the calibrated α̃ that would be used if the sample size were n rather
than Nn, and again whichever τj minimises τj(1− τj). For two-sided inference on linear
combinations, we similarly recommend multiplying the single quantile plug-in bandwidth
by n−2/((12+7d)(2+d)) to get a bandwidth with the optimal rate.

For quantile differences, the adjustment is the same as for linear combinations, but
with separate bandwidths for the T = 0 and T = 1 samples. We again recommend using
τ = argminτj τj(1− τj), and for the one-sided case, the α̃ that would result from sample
size n.
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