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ApPPENDIX A. CALCULATION OF TYPE II ERROR RATE (PROPOSITION 6)

Let v # 0 so that the null hypothesis is false, where as before Hy : &, = [ with §, =
B —~/v/i. Letting So = 1/f(5,).

T _ \/H(Xn,r - fp) -7 _ \/E(Xn,r - gp) . 7 ( SO 41— 1)
T S/ PA =) Sma/p(T—p) /P =)So \Smn ’
P(Thmn < 2)

_ V(X — &) . g So _ .

-7 (sm,mfpu =0 V-5 (Sm,n ! 1) < )

_ Vi( Xy — &) . 2 So _ PNe
d (Sm,n\/p(l —p)  Vp(1—p)So (Sm,n 1> = )

o \/H(Xn,r - fp) + V(Sm,n/s() - 1) P

(1) =P ( S /p=p) <z+ C) :

If the true Sy were known and used in 75, , instead of its estimator .S, ,,, this would be
simply the distribution from Hall and Sheather (1988) with a shift of the critical value by
C = v/[So/p(1 — p)], which is v normalized by the true (hypothetically known) variance.
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2 DAVID M. KAPLAN

But S, is random, so the Hall and Sheather (1988) expansion is insufficient and Theorem
2 is needed.
The type II error is the probability of not rejecting when Hj is false. For a two-sided

symmetric test, this is
P(|Tonl < 2) =P(Thn < z)— P(Thn < —2).

Letting the corrected critical value zy, = 21_q/2 + z%_a/z/(élm) as in (9), and expanding via

(1) and (12), for C > 0,
P(|Ton| < 2) = LT+ H — Hf +On™ ") +o(m™ + (m/n)?) with
LT =®(z24m +C) — ®(—2am + C),
H = §lzam +C) [y (2am + C) + (m/n)us (0 + ).
H = 6(—Zam + C) [ 13,1 (C = Zagn) + (m/n)t35(C = 2am)]|-

I write O(n~'/2) for the n~*/2 terms since they do not depend on m and thus do not affect the

optimization problem for selecting m. Define L=, H; , and H; similarly but with —C' < 0
instead of C' > 0, and thus —y = —C'+/p(1 — p)/f(&,) instead of ~v:

L™ =®(z4m — C) — P(—24.m — O),
HT = ¢(zam — O) |:m71U27,7(Za7m —CO) + (m/n)*us —(zam — C)],
Hy = ¢(—zam — C) [m_luQ,_v(—C — Zam) + (m/n)uz . (—C — zam)} :
I calculate average power where the alternatives +C' and —C' each have 0.5 probability.
Using ¢(—z) = 6(x),

1 _ _ _
PUToal < 20m) = 5 (L 4+ L7) 4 (4 HD) = (8] + )

2) #0024 o™+ (m/nf?) |
For the first-order term LT,
Q(20m+C) — ®(—24m + C)
=O(C + z1-a/2 + zi’_a/Q/(élm)) —O(C = 2102 — zf’_a/Q/(Zlm))
3) = 05t m™ 12 gl + )+ 6(C — 21apa)
since in Proposition 6, C solves 0.5 = ®(z1_q/2 + C) — ®(—21_4/2 + C). Since the fixed-

m critical value is larger than the standard normal critical value, this term contributes
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additional type II error in the m ™! term. Similarly,
L™ =®(zam — C) — ®(—24.m — O)

1
=0.5+ m_lzzia/ﬂﬁb(c - Zl—oz/?) + Cb(—zl—a/z - O)] =L"

Within the m™! and (m/n)? terms, anything o(1) will end up in the o(m™! + (m/n)?)

remainder. Thus, for those terms,
Zam = Zl—a/2 + O(mil)a ¢<Za,m + C) = (b(zl—a/Q + C) + O(mil)-

For the m™! terms, since ¢(x) = ¢(—z) and C = vf(&,)//p(1 —p), and letting d; =
Za,m + 07 d2 = Ra,m — Ca
U (d1) — ug,—(—dy)
_1 1 1

1 1 1
= 4d‘;’ - 102611 + 1_12Cd% - —Z—l(—dﬂg - Z<_C)2(_d1> + 12(—0)(—%)2

1 1
= —§(di{’ + C%dy — 20d7) = —5(z1-ap2 + C)2} o+ 0(m™1),

1 1
u27_7(d2) — Ugﬂ(—dg) = —E(dg + 02d2 + 206@) = —5(21,04/2 — C)Z%_a/g + O(’]’)’L—l)7
(zam + CYm ™ (ugr (zam + C) — g, (= 2Zam — C))

+ &(zam — C’)m_l(uz_v(za’m —C) —ug(—2am + C))

1
=—-m™! [¢(Z1_a/2 + C)(Zl—a/2 + C)Zia/z + ¢(Zl—a/2 - C)(zl—aﬂ - C)Z%faﬂ]

2
(4) +0(m™?).
For the (m/n)? terms, writing f(¢,) and its derivatives as f, f’, f”, and letting M =
[3(f)% = £ £/ (6£9),
U3 ~(2a,m + C) — ug—(—2am — C)
= M(zam +C —C) = M(=z4m — C — (—C)) =2Mz1_42 + O(m™"),
u3,—(2am — C) — Uz (—zam + C)
= M(zam —C — (=C)) = M(—z4m + C — C)) = 2M2z1_n/2 + O(m™ 1),

m2
—5{6CGam + C) s (zam + C) = us(=2am = O)]

+ ¢ (zam — C) [us— (Zam — C) — uz5(—zam + C)] }
3(f1)° — 11"

6) =l

Z1_a)2 [(b(zl,a/g +C)+ d(z1-ay2 — C)] + O(m/n?).
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Combining (3), (4), and (5), (2) becomes

P(| Tl < 2) = 22 (05 4 m (/)50 pl6(C + 210s0) + 0(C — 2100))
- 2(1/4)m_1[¢(21—a/2 +C)(21-a2 + C)Z%—a/z
+ ¢(21-as2 — C)(21-ay2 — C)Zf_a/g]

23(f)6+flea/2 [6(21-0/2 + C) + ¢(21-0/2 = C)] }

+ 02 + o(m™ + (m/n)?),

+2(m/n)

which simplifies to the forms given in Proposition 6.

APPENDIX B. HIGHER-ORDER CORRECTED CRITICAL VALUE

Extending the main text’s results, noting that the fourth and fifth central moments of x3
are respectively 192m(m + 1) and O(m?),

P(Tppe < 2) = B(2) — ngﬂgz) +(1/6)"(2)2" gfg T (172487 (2) 242 [(X%Zn;)fm)ﬂ + O(m?/m?)
_B(x) — ngﬂf) +(1/6)" ()2 ;jﬂ@ (1/24)(32 — *)6(2) 24 (192m2/256m™) + O(m~?)
YRS W CIGEE RS BT E B
o) z3fﬂgz) . ¢(z)(17z59 6—m82z3 3 o)

Let 2 = 21_o + ¢1/m + ca/m?. We can verify the result with ¢; = 23__ /4 and ¢y = [2}_, +
823 1/96:
P(Thmoo < 21— + c1/m + ca/m?)
= D21 +c1/m+ c/m?) — (4m) " D21 + c1/m + o/ m?) (210 + c1/m + ey /m?)’
+ (1/96)m ™ 2¢(21_o + c1/m + co/m*) 1720, — 823 — 32]_, + O(1/m)]
= ®(z1-0) + (c1/m + ca/m?)$(21-0) + (1/2)¢ (21-0)ct /m*
— (4m)"H{[d(21-a) + ¢ (z1-a)er/m][z1-a + c1/m]’ |
+ (1/96)m 2 p(z1-a) [1727_, — 827_, — 32{_,] + O(m™®)
=1—a+m ad(z1—a) + m? [20(21-a) — (1/2)c21-00(21-0)]
— (4m) 7 o(21-a)2_o — (1/4m ™ {30(21-0)21_a01 — c121_oP(21-a) |
4+ (1/96)ym ™ 2p(21_o)[1720_, — 820 — 321 | +O(m™®)
=1—a+m '¢(zi_a) {1 — (1/4)2]_,}
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+ m*2¢(z1,a){cg C(1/2)E 2 — (3/)22 e+ (1/d)erzt
4 (1/96)(1725_, — 823 — 3z17_a)} +O(m™?).
In order to zero the m~! term, we must have ¢; = (1/4)z}__. To zero the m~2 term,

0=rcy— (1/2)21-a(1/16)27_, — (3/4)27_,(1/4)z_, + (1/16)=]
+ (17/96)27_,, — (8/96)23_, — (3/96)27

=y — (1/12)2}_, + 27_,[(17/96) — (3/16)] — 2{_,[(1/32) + (1/32) — (1/16)],
co = (1/96)[827 ., + 20 ).

APPENDIX C. ACCURACY OF APPROXIMATION OF FIXED-m CRITICAL VALUES

[ tried three alternative approximations, but the simplest (as used throughout the paper)
is quite accurate for all but the very smallest m, as Tables 1, 2, and 3 show. The second
approximation alternative adds the O(m~2) term to the approximation, so that the error
of the approximated critical value is O(m™2). The third alternative uses the critical value
from the Student’s t-distribution with the degrees of freedom chosen to match the variance.
The latter two approximations are more accurate, but the difference is small. To compare
them, for various m and nominal test size «, I simulated the two-sided rejection probability
if a given critical value was used for the statistic 7, . To gauge simulation error, I also
include in the tables the critical values given in Goh (2004) (who also ran 500, 000 simulation

replications for each m and «).

APPENDIX D. SIGN OF u3((2) FOR COMMON DISTRIBUTIONS

The method is the same for the example distributions below. I have worked out normal,
t-, exponential, y?, and Fréchet distributions, all with the same result of being positive.
The value of ug for the uniform distribution is equal to zero, since its pdf is flat and thus
derivatives are all zero.

The pdf and derivatives of the normal distribution are

1
Jale) = 2w

fal@) = =(z = p)/o* - fulx)

fo(@) = —fal2)/0® = fi(2)(2 — p) /o”
—fal@)/0® = [=(z = ) /o® - ful@)l(x — p)/0”
—fu(@)/0®* + (x = p)* /0" ful@)

(2 —p)?/o" —1/0%

o~ (e=1)?/(20%)
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TABLE 1. Rejection probabilities (%) for different critical value approxima-
tions, for test statistic T, » when oo = 10%, based on simulated distribution

rejection probability for critical value

m  Goh (2004, simulated) including m™' including m=2 ¢
1 10.00 13.38 10.54 12.33
2 10.12 11.36 10.17 10.44
3 10.08 10.72 10.06 10.12
4 10.15 10.44 10.03 10.03
5 9.93 10.18 9.89 9.87
6 10.03 10.24 10.02 9.99
7 10.04 10.23 10.07 10.02
8 9.99 10.02 9.89 9.86
9 10.06 10.16 10.06 10.02
10 10.00 10.14 10.06 10.03
11 9.97 10.11 10.03 10.00
12 10.02 10.12 10.06 10.02
13 9.92 10.00 9.95 9.92
14 10.06 10.04 9.98 9.95
15 10.07 10.05 10.00 9.97
20 10.04 10.03 10.01 9.99
25 10.08 10.09 10.07 10.06
30 9.99 10.04 10.03 10.01
50 10.10 10.03 10.02 10.01

Then,

3fn(2) = ful@) 7/ (2)

—(@—m /o ful@)] = fal@) - fu(@)[(x — p)* /0" = 1/0"]
Fa(@)*(@ = p)* /o = [fu(@)[(z — p)* /0" = 1/07]

= (@) {3(x — p)*/o" — (& — p)*/o" + 1/0"}

= [fa(@){2(x — p)? /0" +1/0°} > 0,

since again everything is to an even power and positive. The sign of 3/ (£,)? — fn(&) f1(Ep)

(@)1
(@)1
is thus positive at any quantile for any parameters p and o?. Thus the sign of ugg(z) is

always the sign of z for the normal distribution at any quantile.
The pdf of the t-distribution is

I'((v+1)/2) 2/ \—(0+1)/2
=77 7 (] .
Writing the derivatives of the pdf in terms of the pdf,
—v—12z
fi(z) = filz) - (1+2%/v)~

2 v
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TABLE 2. Rejection probabilities (%) for different critical value approxima-
tions, for test statistic T, o when o = 5%, based on simulated distribution

rejection probability for critical value

m  Goh (2004, simulated) including m™' including m=2 ¢
1 4.93 8.21 5.84 6.87
2 5.03 6.25 5.20 5.47
3 5.05 5.70 5.10 0.28
4 5.15 5.46 5.06 5.21
Y 4.92 5.23 4.96 5.08
6 5.04 5.25 5.04 5.16
7 4.98 5.16 5.00 5.12
8 4.97 5.11 4.99 5.09
9 4.96 5.10 4.99 5.09
10 5.01 5.14 5.06 5.14
11 4.96 5.09 5.01 5.10
12 5.14 5.18 5.12 5.20
13 4.98 5.03 4.98 5.05
14 5.05 5.04 4.99 5.06
15 4.98 5.02 4.98 5.05
20 5.04 5.01 4.99 5.04
25 5.08 5.07 5.06 5.11
30 4.96 5.02 5.01 5.04
50 5.06 5.05 5.05 5.07
fi(x 32x
/) = *>+ﬁ@>—7¢— (14a2/0)"
—12 —1—-v—
= o) | 20 T T (14 2 )
= filz) - [A]
Then,
3fi(2)’ = fila) [/ (x)
=3[fi(@)]* - (—v = 1)/2)*(22/v)* (L + 2%/v) " = [fi(2)]" - A
= [fi@)]* - { = (—v=1)/2)(2/v)(1 + 2%/v) "
+((=v=1)/2)(22/v)*(1 + 2% /v) *(3((—v — 1)/2) — (—v = 3)/2)}
= ) {0+ /o) (1 + 2/
(

+2((v+1)/0*)2*(1 + 2% /o) *(3v + 3 — v — 3)/2}
@) [((0+ Do)+ a2 /0)7 +2((0 + D /)L + 2*/0) 2]
[ft(l’)]2 ((v+1/v)(1+2*/v) 1 +22°(1 + 2% /v) '] > 0,
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TABLE 3. Rejection probabilities (%) for different critical value approxima-
tions, for test statistic T, o when o = 1%

rejection probability for critical value

m  Goh (2004, simulated) including m™' including m=2 ¢
1 0.97 3.19 1.83 1.68
2 1.00 1.73 1.21 1.12
3 1.01 1.42 1.11 1.13
4 1.07 1.28 1.09 1.15
Y 1.01 1.20 1.05 1.14
6 1.05 1.17 1.05 1.15
7 0.97 1.10 1.01 1.10
8 0.96 1.06 0.99 1.08
9 0.97 1.05 0.99 1.09

10 1.01 1.06 1.01 1.10

11 0.96 1.04 0.99 1.08

12 0.98 1.05 1.01 1.09

13 1.01 1.02 0.99 1.07

14 1.04 1.05 1.03 1.10

15 0.99 1.02 1.00 1.07

20 1.02 1.05 1.03 1.09

25 0.97 0.98 0.97 1.03

30 0.98 1.00 0.99 1.03

20 1.01 1.02 1.01 1.04

since z only appears as . The sign of 3f/(&,)* — f:(&,) f{'(&,) is thus positive at any quantile
for any degrees of freedom v. Thus the sign of uzo(z) is always the sign of z for the t-
distribution at any quantile.

The pdf and derivatives of the exponential distribution are
Jolw) = e
fo(@) ==X fe()
fo (@) = N2 fe(x)
Then,
3fi(x)? — fe(x)fl(x)
= 3N [[fe()]® = N?[fe(2)]?

since again everything is to an even power and positive. The sign of 3f.(&,)* — fo(&) f (&)
is thus positive at any quantile for any parameter A\. Thus the sign of ug(2) is always the

sign of z for the exponential distribution at any quantile.
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The pdf and derivatives of the x7 distribution are

_ 1 k/2—1_—x/2
fulz) = RN

fi@) = fil@) - [(k/2 = 127" = (1/2)]
K@) = fy@)[(k/2 = D™ = (1/2)] + fi(2)(1 = k/2)2"
= ful@){(1 = k/2)27* + [(k/2 - D)a™" = (1/2)]"}

Then,
3/ (2)* = fi(@) f{(2)
=3[/ (@)P*[(k/2 = D)a™" — (1/2)]?
= [A@P{Q = k/2)27 +[(k/2 = D27 = (1/2)]"}
= [fu(@){2[(k/2 = D" = (1/2)] = (1 = k/2)277}
= [fu(@){2[(k/2 = )%™ + (1/4) = (k/2 = Da™"] — (1 = k/2)277}
= [fu(@){2(k/2 = 1?27 + (1/2) = 2(k/2 = D)o™' — (1 — k/2)2""}
= [ @){(1/2) + (k =2+ 1)(k/2 = )27 — (k — 2)27'}
= [[u(@){(1/2) = (k = 2)27" + (k — 1)(k/2 — 1)a7%}.

Ignoring the f, (), the roots of the last expression are {v/2 —k +k — 2,k — 2 — /2 — k}.
These are imaginary if k > 2; if k = 2, they are both zero, and if k = 1, they are {0, —2}.
Since x? has non-negative support only, this means that there are no quantiles &, that would
yield a negative value. So, again, the sign of uzo(z) is the same as the sign of the critical
value z, for any quantile £, of any x} distribution.

The pdf and derivatives of the Fréchet distribution are

fr () = (=1 —=a)z 'z ae™ " +ax "z e "
= frr(2) (1= a)z™ +az™7
F(2) = For@](—1 — a)r™ +az~] 4 fr()[(1 + @) — afa+ 1)
= fr(@)[(-1 — @)z + az™ P + fr(2)[(1 + @)z — a(a+ )27
Then,
3frn(2)? = frr(2) fron ()
=3fp () — fr (2)* = frr(2)?[(1 + )22 — a(a+ 1)
=2fpr(2)’[(-1 — )2~ + az”*'? = fr(2)*[(1 + @)z — a(a + 1)z~



10 DAVID M. KAPLAN
= fre(2)*{2[(-1 — o)’z 2 + 222 2 4 2(—1 — o) tax ]
—[(1+a)z™ —ala+ 1)z~ 7]}
= fre(@)?{[2(1 + a)? 272 + 20%272* 2 — 4(1 + a)az™*?]
—(1+a)z 2+ ala+ 1)z %}
= fr(2)2072{20° + 4o+ 2 -1 —a+ 2 ala + 1) — 4(1 + a)a] + 2%z}
= fre(2)’272{20% + 3a + 1 — 27 *3a(a + 1) + 222272},

This is always positive; there are no values of {«, z} where this is zero. So for the Fréchet

distribution, too, uso(z) has sign equal to the sign of the critical value argument z.

APPENDIX E. PROOF OF EDGEWORTH EXPANSION OF SBG TEST STATISTIC UNDER
TRUE LOCAL ALTERNATIVE HYPOTHESIS

Note that, as in HS88, (a/bc) means (5. ); for instance, (as/2a;) means (32), and (9" (p)/69(p))
means (T((m) “HS87” refers to Hall and Sheather (1987), the working paper preceding HS88,
which still refers to Hall and Sheather (1988). Equation references are to equations labeled
within this appendix unless explicitly said to refer to the paper. In general, (intermediate)
results are stated before their derivations/calculations, so that the derivation of any given
result may be skipped over if desired. The other version of this appendix skips most of the
calculations.

This proof of the Edgeworth expansion theorem from the paper uses the same setup and
definitions as the main text of this paper. HS88 showed the Edgeworth expansion for the
test statistic 7, , when v = 0; I want to show the expansion under any 7, which includes
the result of HS88 as a special case (y = 0).

As in Section 2 of the paper, the null hypothesis is Hy : §, = /3, and the true {, = 3—v/y/n.

I will continue from equation (18) in the paper, which showed that

_ \/E(Xn,r - gp) + 'V(Sm,n/SO — 1) 5
P(T,n<z)=P ( 5 p—(l — <z+4+ C) ,

where C' = vf(&,)//p(1 —p), So = 1/f(§,). I want to derive a higher-order expansion
around the (shifted) standard normal distribution.

As in HS88, I must first deal with centering X,,, = X, |np)+1 since as n increases, |np|
increases in discrete steps of one. Since this doesn’t depend on ~, the result is the same as
HS88, but I show more of the calculations here. To account for these discrete jumps in 7,
instead of X,,, — §, there will be X,, , —n,, where

~(5)

(6) n,=F1
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As HSS88 note,

n

Zj’l =In(n/r) — (n—r)(2nr)"' +O(n?)

r

= (p) = () ew = 1+ (1= )] + O,

the first identity following from identity 0.131 of Gradshteyn and Ryzhik (1965).
For the intermediate steps, letting €, = [np] + 1 — np (as in HS8Y),

In(n/r) =1In(n/[np]) = In(n/(np + €, — 1)) = In(n) — In(np + €, — 1)
= In(n) — [In(np) + (e, — 1)%}) +0(n?)]
= In(n) — In(n) — In(p) — (np) (e, — 1) + O(n™2)

=In(p™") — (np)~'(en — 1) + O(n™?), and

(n = r)(2nr)™ = 1/(2r) = 1/(20) = S(1/(mp+ &0 ~ 1) — p/(pn)

()7 = 2™ 4 (e = Do) = plo)

N = N =

((np)~' +0(n?) — p(np)™")

m) (50— p) + O ™?)

—~

Putting these together gets

M S =)~ () e 1 (1 p)] = O ),

T

HS88 conclude that if f has a bounded derivative in a neighborhood of ¢, and if f(¢,) > 0,

0 Mo =&+ n e — 14 5 (1= D)/ F(&) + O™,

which is derived by plugging into the definition of 7, and taking a first-order Taylor expansion
around p, noting that F~!(pc) = F~1(p) + Wp(c —1)+...and F(p) =&, so

)

= ! [exp (_ (hl(P_l) — (np) e — 1+ %(1 —plE O(H_Q)))]

anFfl

f<1§p> fexp(—In(p™)) (exp { (np) "(en — 1+ (1/2)(1 = p)) + O(n~2)} = 1)]
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1

g [P (e ()™ o = 1 (0/2)(1 =) + O07)} - 1)

— 6+

[P ((mp) " (en = 1+ (1/2)(1 = p)) + O(n™?)) ], as e” — 1 =2+ O(a?),

1
=%t i)

1

f(ﬁp)n_ (€, —1+(1/2)(1=p)) +O(n~?)

=&+

HS88 continue from (8) and the fact that S,,,, = 1/f(&,) + Op[m =2+ (m/n)?] (see Bloch
and Gastwirth (1968)), deducing

V(X — &) /7 =0 (X, — 1) /7 0w, + Op[nVPm V2 4 (m/n)?n 1,

where w, = [e, — 1+ (1 — p)]/[p(1 — p)]*/?, which can be derived by writing

ﬁ(np - 512) . \/ﬁ("h) - gp)

~

T p(l _p)Sm,n
V1 (las1r0/20-)
VP = p)Sppn A0 f (&)

+ O(n_2)> (using above)

_ 12— 14+ (1/2)(1 — p) [1+0, (m™2+ (m/n)?)]
p(1—p)

+ O(n~3/?) (using Bloch and Gastwirth (1968))
9) =n"2w, + 0, (n~2m~12 + n_l/z(m/n)Q)
Then (following HS88) the remainder n=/2m=1/2 + (m/n)?n=1/2 = ojm™! + (m/n)?], and
S0
P[n'*(Xo, = &)/7 < 2] = Pn'(Xp, — p) /7 < 2 =07 Pw,] + O(n™*?)
= Pln!* (X, —np) /7 < 2] =07 Pwd(z) + O(n),

~ —

T T

P nl/Q(XnJ‘ - fp) —i:’y(SmJl/SO - 1) S Z:| —p [n1/2<Xn,r - np> + ’Y(Sm,n/SO - 1) <
— Y 20,6(2) + o[m ™t + (m/n)?.

(As HS88 note, this is the so-called ‘delta method’ for deducing Edgeworth expansions; see
Bhattacharya and Ghosh (1978), p. 438. It may be made rigorous by pursuing arguments
similar to those given here.) Therefore the theorem will follow if, instead of proving equation
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(12) from the paper, I prove that

sup P [nl/z(Xn,r - np) TW(Sm,n/SO - ]-) S 5
—[@(2) + n 2l (2)p(2) + M uay (2)0(2) + (m/n) us 4 (2)B(2)]
(10) = o[m™" + (m/n)?],
where
1/2 /
uf 2:1 p 1+p22_ _’Yf(gp>(_pf(5p)_ 1 )Z
121 =5 (1—19) PRI G T EA Tr R
(. ”2( &) ) :
(%) (et )=
Uz (2) = ! { /(%) 22— —72[‘70(5”)]22 - zs}
a 4 [[p(1 —p)]'/? p(1—p) ’
_ J" (&) f(&p) + 3[]”(51))] ( 7S (&) . )
s, (2) = 61/ (&))" pi—p)? ")
Now to prove the above. As defined in HS88, let
(11) G=F'lg=G and H(x)=F'(e™),
and let Wy, Ws, ..., be independent exponential random variables with unit mean. The

sequence {Xps,1 < s < n} has the same joint distribution as {H(> .., j~'Wj),1 <
s < n} (David (1981), p. 21), and in a slight abuse of notation as in HS88, write X,, s =

r—1 r+m—1 n n
=207V M=) T As=) T, a=HY (Zj—l) ,
r—m s r+m r
(12) Z = [p<1 - p)]l/Q[nl/z(Xn,r - 7710) + ’Y(Sm,n/so - 1)]/%
= [n1/2(Xn,r - 77?) + 'V(Sm,n/SO - 1)][(”/27”) (Xn,r+m - Xn,r—m)]_l‘

Note that A; and Ay are O,(n~'m'/2) and Az is O,(n~Y?). Informally, A; and A, are
sums of m terms, and asymptotically j is O(n) since the smallest j ever getsisr—m = np—m
and (np —m)/n =p—m/n — p. To be O,(n"'m'/?), multiplying by nm~'/2 should yield
some non-degenerate asymptotic distribution. So, nm~'?A; ~ /mL Zzgifn(n/ NV, ~
vmV; —4 N(0,%) and indeed the statement for the first two holds. Similarly for As,
note that iy ~ Vit S0 (n/i)Vi & 1 2(n(1 — p) 2 (n(1 — p) 2 TSIV, s,
(1—=p)2N(0,1) = N(0, (1 — p)).
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Alternatively, the variances can be calculated. This is already done later in (58) and (57),
where it is shown that E(A2) = O(1/n) and F(A?) = O(m/n?), as with A,. Taking square
roots, then,

(13) Az = O(1/+/n) and
(14) Ay = O(m'*n™h)
(as with Ap).
Following the structure of HS88 again, with the above and Taylor expansions, Z =Y + R

where
(15) Y = —pn'2[(1+6)(As + Ag) + B, 6§ =—(m/n)*¢"(p)[6g(p)] ",
B =0V + (n/m)(b1Ay + baAg)Ag + (n/m)bs(A1 + As)(Az + V)
(16) + (n/m)?ba(Ar + D) (Ag + W) + b5 Ag(Ag + 20),
by = —p/2,by = —p/2,b5 = —p/2 — (m/n)(az/2a1),by = (p/2)%bs = —ay/2a1,¥ =
7/(pg(p)v/n), and
(17) R = O™ om0 ¢ (/)]

Here, Y is of the same form as HS88, but with ¥ now additionally showing up in the
higher-order B terms.

Note the Taylor expansion
H (Y wili) = H (Y1) + (Y wili= Y v/i) 1 (3 1/5)
+2) (S wili -y 1/‘7')2 1 (3 1/5) + s
1 (S wi/i) =1 (3o1/5) = (o viti) i (3o 1/4)
(18) v (i) 7 (1) +o

where all the sums are over the same range.
For the numerator of Z: since X,,, = H(},., W;/j) and n, = H(3 ! 1/7), applying the

expansion above yields

KXoy = 1p = <Z Vj/j> H' (Z 1/j> +% (Z Wj) H" (Zw) +0,(n?)as
(19) = (Ag + A3)ay + %(Ag + As)?ay + 0, (n73/?),

since az = O(1), shown below following (49).
When 7 # 0, the term (S,,,.,/So—1) # 0, too. The only random element of this expression
is Spn.n, which is the denominator of Z. In (37), the stochastic expansion for S,,,, divided by
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g(p)(= So, cf. (44)) is written 1+v (where v also contains remainder terms), so the expansion
of Sy 18 So(1 + v), and consequently S, ,,/So — 1 expands to So(1 + v)/So — 1 = v. Since
~ is a constant, this means that the stochastic expansion of the numerator includes the
additional term yv with v as defined in (39). Thus,

n1/2(Xn,r —p) + ¥ (Smn/So — 1)
(20) =V [(Ag + Az)ar + (1/2)(Ag + Asz)az + Op(n™2) + ] .

For the denominator of Z: the following work, which is no different when ~ # 0, rigorously

proves the intermediate results in HS87, which are

o () o)
r+m r—m

= —a1 (A1 + Ay) — (m/np)ag(A; 4+ Ag + 2A3) + O, (n~32m'% 4 n=52m?),

(5] ()
= (2m/n) [g(p) + (1/6)(m/n)*¢"(p) + O{(m/n)*" +n"'}] .

The denominator of Z in (12) is

(n/Qm)(Xnm-i-m - Xn,r—m)

(21) = (n/2m) [Xnﬁm _H (Z”: j_1> B { Xy (i j_l)}

r+m r—m
r+m r—m
Define
r—1 r+m—1 n
(22) 515 Z jila 52E Z jila 535 Z jila
j=r—m j=r j=r+m
so that A; +6; = z;;ifm W;/3j, ete.

Using Euler-Maclaurin,

515il/j:Zl/j—l/r:Z(r—m—i—i)’l—l/r

= /Om(r —m+x) de+ (1/2)(r 7 + (r —m)™Y) = 1/r + O(f1(0))

=In(r—m+2)[J' + (1/2)@ +0(n™?)

(r—m)
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=1 1/2 -2
nr—m+</)r2(1— /r)+0(n )
=In(1+ n )+ O(mn =2 +n?)
r—m
1 m 1 m? 2 m3

1 1
SR e L N Y e
+O(m*/n") + O(mn™2 +n~?)
m 1 1m? 1 1m3 1
T1—mir 21— @m/r) +mE2 38 1= 0(m/n)
+O0(m*/n* +mn~2 +n7?)

= Z (1 (m/r) + (m/r)? + O(m? /) = -

+ %%(1 +O0(m/n)) + O(m*/n* + mn=2 + n~?)

(1+ (2m/r) + O(m*/n?))

1m?
r2

= % +(m)r)? + (mfr)? — 22— (e + e+ O(m nt + mn +n”

m 1 m? 1 m 4, 4 -2 -2
(23) :n_p+§n2_]92+§n3_p3+0(m /n +mn +n )
Again using Euler-Maclaurin,

r+m—1 r+m

Z 1/3_21/3—1/r+m) Z(r+z’)*1—1/(r+m)

:Amw+xrwx+unxw+mr%uw*w—uw+ww+oumm»

(r+m)—r
r(r+m)

— n7’+_m . m
=1 r +(1/2) 3 r2(14+m/r)

=In(1+ ?) +O(mn~%+n"?)

= In(r +2)|7" + (1/2) +0(n™)

+0(n™?)

Im 11m* 12m? 4, 4 g g
:ln(l)—kI?—gﬁﬁ—i—éﬁ—?’—i—O(m/n)+0(mn +n77%)

m m2 3

_ 44 —2
(24) TR + S +O0(m*/n" +mn™7),

and again using Euler-Maclaurin,

Zl/]—ZT—I—m—i—i)_l

r+m

- /08(7“ +mt ) e+ (1/2)(n + (r+m) ) + O(fD(0)

%)
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r+m-+n

=In(r +m+x)|; + (1/2)m +0(n?)

=In n(l +p) mn~2 4+ n"2

=1 r+m +(1/2)n2p(1—|—(m/np)) +0( +n)

=In . fm - 12:pp +O(mn™%) =1In e +1In(1 + 12%;) +O0(n™?) + O(mn™?)

R A 4 B
(25) =In {2n2£p—zrnj(tlr:)p) } + O(mn™2).

n

The first needed intermediate result is for X, —H (>0, 77 ) —{Xn—m—H 771}
which in HS87 is equal to —a; (A1 +Ay)—(m/np)ag(A;+Ag+2A3)+0,(n=3/2m /2 4n=5/2m?).
Note: the following assumes that H"'(d3) and H" (01 + 2 + 03) both exist and are O(1). If
m — 0o, (m/n) — 0, then this is true as long as ag = O(1), which is shown following (49)
to be true assuming f(§,) > 0, f'(§,) < oo, and f”(§,) < oo.

In above notation, and using the above expansion,

nr+m - Z]il {Xn,rfm - H(Zjil)}

Zy—lw Z]‘l {HO 57 W) —HO i)}
={OQ_Vi/HH' O 1/5) + 1/ Vi/i)H"(D 1/5) +

—{Q_ Vi H' Q1) + (12O Vi) (Y 1/5) +
= {(Q3)[H'(55)] + (1/2)(Q3)*[H"(d3)] + O(AZH" (d3)) }
—{(A1 + Ay + A3)[H'(01 + 02 + 03)]
+ (1/2) (A1 + Ay + A3)?[H" (61 + 02 + 65)]
+ O(ASH" (61 + 65+ 63))}
= {A3[H' (62 + 83) + (=02) H" (62 + 83) + (1/2)83H" (32 + 03) + Op(m? /n?)]
+ (1/2)AS[H" (85 + 03) + (—02) H" (85 + 63) + Op(m? /n®)] + O,(n~/?)}
—{(A1 +Ar + Ay)
X [H' (69 4 63) + 01 H" (65 + 83) + (1/2)03H" (53 + 83) + O, (m? /n?)]
+ (1/2) (A1 + Ay + A3z)?
X [H" (65 + 63) + 6, H" (65 + 65) + O,(m?*/n?)] + O, (n%?)}
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= {A3CL1 — A352a2 + Op(nfl/sz/'rf + 7171/2777,3/713)
+ (1/2)A3a2 — Op(n~"m/n + m?/n?) + Op(n~?)}
— {(Al + AQ + Ag)al + (Al + Ag + A3)51a2
+ 0, (n"V2m? /n? + n~V?m3 /n?)
+ (1/2)(A1 4 Ag + As)2ay + Oy (n~'m/n +n~'m?/n?) 4+ O, (n~*/?)}
= al[A3 — (Al + AQ —I— A3)]
+ GQ[—Ag(SQ + (1/2)A§ - (Al + AQ + Ag)(Sl - (1/2)(A1 + Ag + Ag)Q]
+ 0, (n~¥2m/? 1+ n~5/2m?)
== —al(Al + Ag)
+ CLQ[_AE}((SQ + 51) - (Al + A2)51 + (1/2)A§ - (1/2)A§ + O (ml/Qn_ln_l/Q)]
+ 0, (n~¥?m/? + n~5/*m?)
(26) = —al(Al + Ag) - 51(12(A1 + AQ + 2A3) + Op(n_3/2m1/2 + n_5/2m2),
which verifies the result from HS87 since, as shown in (23), §; = (m/np) + O(m?/n?).
The second needed intermediate result is for H(} . 77" — H(3» i) = H(d3) —

rmj

H (6,405+63). From HS87, this should equal (2m/n)[g(p)+(1/6)(m/n)%*g" (p)+0O{(m/n)* <+
n=t}].

Using a Taylor expansion around d3 and then directly approximating H'(d3),

H(0y + 03+ 05) — H(83) = (61 + 62) H'(05) + (1/2)(61 + 02)* H"(3)

1
(27) + (01 + 89)>H" (d3) + O(m* /n*)

Now to plug in the approximation of (53 from (25). Note that for some small €, e~*T¢ =
e+ O0(e(—e™)) =e " + 0( ), and f(e™® +¢) = f(e™®) + f'(e7")O(€) = f(e™) + O(e) if
f'(e7*) = O(1). From (25), § IH{W} + O(mn™?).

H,(53) _ eXp( 53)

JF~ (exp(=0d3)))

exp(—[In{ 25220y 4 O(mn~2)])

f (P~ (exp(—[In{ 2522} 4+ O(mn~2))))

2np(r+m)

2np(r+m) —9
_2n2pp+n(1+p) + O(mn )

FF N (g + O(mn=2))

2n2p+n(1l+p)
; 0<mn-2>] [g<

2np(r + m)
2n?p 4+ n(l +p)

2np(r + m)
2n2p +n(1 +p)

)+ O(mn™?)
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B { 2pr + 2pm
2np(1+ (1 + p)/(2np))
2pnp(
2np
x g(-) + O(mn™?)

= [=p+ (1+p)/(2n) = = + O(mn~2)]g() + O(mn~)

9() + O(mn™?)

2pm

1= (1+p)/(2np) +O(n7?%)) — %(1 — (1 +p)/(2np) + O(n™?))

2n
1+p

+ (1/2)9"(19)[5 - 7]2 +0(m? /n?),
)

3

m 14+p m 1+0p
H(§:) = [—p— — 4+ 2 - _
(03) = [-p— —+ - =lglp+— = —~

+(1/2)g" ()5 — Olmn™2)] + O(m* /n’)]
p

m

(28) — o)~ o) + pg )] - [g <p>+p92( '+ o

+ O(mn~% +m?*/n?).
From (47) below, H”(z) can be represented as ¢'(e™)e™** — H'(z).
H"(83) = ¢/ (e*)e™* — H'(J3)
=g(e 1nHLm+O(n*1))[€—53]2 — H'(55)
(
(

r+m

o)
= ¢'(p+m/n)lp +m/n]* — H'(5)

)+ (m/n)g"(p) + O(m® /n*)|[p* + 2pm/n + (m/n)?| — H'(Js)
= g'(P)p* +2pm/n + (m/n)’] + (m/n)g" (p)[p* + 2pm/n + (m/n)?]
(m?*/n*) — H'(33)

= g'(p)p* + 2¢'(p)pm/n + ¢'(p)(m/n)* + (m/n)g" (p)p

(1+0(n ) — H'(6s)

2

19
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+2(m/n)g" (p)pm/n — H'(53) + O(m?/n?)
(29) = (m/n)g"(p)p* + ¢'(p)p” + 24 (p)pm/n — H'(85) + O(m?/n?).

Using results from (48) below,

H"(33) = —g"(exp(—03))(exp(—03))° — 3H"(05) — 2H'(3)
(30) = —¢"(p)p* — 3H"(83) — 2H'(03) + O(m/n)
From (23) and (24) above,

2m m? m? 2m3

51+52:—+
np

4 4 -2
ozt 2np? + S +O(m*/n* +mn~7)

B 2m 2m3

= + 3y + O(m*/n* + mn~?).
/ 2m  2m’ 47,4 ~2
(51 + 52)H (53) = [n_p + W + O(m /n + mn )]
<o)~ "low) + pg 0]~ 5l 0) + P2 1 O 4 )
2m  2m? 44 Ly
= [n—p+3n—3pg+0(m /n” +mn”7)]
< p00) ~ (o) + 09 0)] — "5 1o/ ) + L O )
= gyl + T 20 o)
m? 2g(p)  24'(p) " 4. 4 -2
(31) D= = 2 )]+ Ol ),
1 2 prn _1.2m 2m? 44 4 —2\\2
5(51 +02)°H"(03) = §<n_p + iy +O0(m*/n* +mn™%))
x [(m/n)g"(p)p* + ¢ (p)p* + 29 (p)pm/n — H'(83) + O(m? [n?)]
1, 4m? 47 4

x {(m/n)g"(p)p* + ¢'(p)p* + 24 (p)pm /n
~ [=p9(p) = —[9(p) + pg ()] — O(m*/n?)

+O0(n™ ") 4+ O(mn™ + m?/n®)] + O(m?/n?)}
= (:—j%){[g’(p)ﬁ +pg(p)] + %[9”(19)192 +2¢'(p)p + g(p) + pg' (p)]}

+O(m*/n* + m*n~?)}
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= 7:—22[29/(]9) + 29_@] + 7:_33[29//(])) n 69;9(19) n 2gp(2p)]

+O(m*/n* + m*n~?)

(32) = g/ (p) + 20y TR | SO gy

nd" p? P

+O(m*/n* + m*n~?).

3

1 3ryrm o 1 2m 2m3 4 4 —2
6((51 +02)°H"(3) = 5 <n_p + Snips + O(m*/n* +mn ))
x [—g"(p)p® — 3H"(83) — 2H'(d3) + O(m/n)]
= é (% + O(m4/n4))
x [=g"(p)p” = 3lg' (p)p* — H'(d3) + O(m/n)] — 2H'(33) + O(m/n)]
— (s = (0 = 31y () + H'(6)] + O )
— sl 08 = 3 0)8* ~ palp)] + O(m*/n’)
(33) _ _% (451()]29) i 49;)(17) 4 49;(19)) + O(m4/n4)

Adding (31), (32), and (33), the expansion of the second part of the denominator in (27)
becomes
H (01462 + d3) — H(03)
= (01 + 02) H'(d3) + (1/2)(d1 + 62)* H" (33)

(6 + 62 H(85) + O(m* /)

6
2000+ -2 ) T2 200D gy

Qj 2g(p) Lm [29(22?) N 69;?(17) 99" ()]
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_4g(p)  4g'(p) 49”(10)]
3p? P 3

+O(m*/n* +mn™?)

+2¢"(p)

2m m?® ¢"(p)

= —79(1?) + F[_ 3 ] + O(m4/n4 + mnfz)
(34) = —(2m/n)lg(p) + (1/6)(m/n)*g" (p)] + O(m* /n* + mn~?).

For the sole purpose of comparing this work to HS88, note that the full expansion given
for Y as defined in (15) is

Y = —pn'/?[(1 + 6)(As + As) + B
= —pn'/? [(1 — (m/n)*g"(p)[69(p)] ") (A2 + Ag) + (n/m) (b1 A1 + byAg) Ay

(0 /m)bs(Ar1 + A2)Ag + (n/m)?ba(Ar + A2)*Ag + b5 A3
— —pn/?
X |(1= (m/n)2g" (p)[69(p)])(A2 + Ag)
+ (n/m)(=p/281 + (=p/2 + (m/n)(az/2a1)) Az) Ay
+ (n/m)(=p/2 = (m/n)(as/2a1)) (A1 + As) A
(35) + (n/m)*(p/2)* (A1 + A2)* Az — az/2a:1 A

From (12) before, Z = [p(1 — p)]*/2[n*2(Xn, — 1p) + Y(Smn/So — D][(n/2m)(Xnrim —
Xor—m)] 7' T will first expand the Z when v = 0, written Z,, as considered in HS88.
Using the expansion that for small €, (1 + €)' = 17! + (=1)17% + 1/2(=2)(—=1)173¢* +
1/6(=3)(=2)(—1)17* +... =1 — e+ €+ O(e?), plugging in (19), (26), and (34) yields

Zy = n1/2<Xn,r —np)[(n/2m) (X m — Xn,r—m)]_l
= n"2((Ag + Ag)a;s + %(A2 + As)?ay + O, (n~?))
X [% (a1 (A1 + Ag) — (m/np)az(Ar + Ag + 2A3) + 0,(n=3?m!? + n’5/2m2))
+(n/2m)(2m/n)[g(p) + (1/6)(m/n)*g" (p) + O{(m/n)** + nfl}]} B

= _p"I/Z((A2 + Az)(—a1/p) (Ag + As)?ay + Op(n_3/2))

1
2
X [% (_al(A1 + Ag) — (m/n)(az/p) (A1 + Ao + 2A3) + Op(n_3/2m1/2 N n_5/2m2))

Tt (m/n)Q%@ + O{(m/n)*** + nfl}] R

(AQ + A3)2a2 + Op(n_3/2))

_ —pn1/2((A2 + A3)(—a1/pg(p)) — 2pgl(p)
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* |gm (- (al/g(p))(Al + Ag) — (m/n)(az/pg(p)) (A1 + Ay + 21;)
+O0,(n*Pm!? + n752m?))

29 '(p) 2+e -1
L (mfn) g5 OLm /) n” }]

(36)
= —pn'?O(1+v)" = —pn'?O(1 —v + 1 + O(V*)),

defining © and v for ease of notation.
If (20) is used instead of (19), including the new ~ term, and noting that above I had

1/2

divided through by ¢(p) in addition to factoring —pn'/# out of the numerator,

Z = [_Pnl/Z@ +w][l 4]t = —pn1/2(@ — ) (1+v) !
(37) = —pn'?[0 — (0 + V) + (O + V)v* + O(n~ /2%,
with U = v/(pg(p)y/n) as in (16). © and ¥ are both O,(n"1/?), and v = O,(m~*/2), which

is in R, so the remainder works out.

In the following, I again first do the simpler case when v = 0, and then add in ¥ alongside ©
in the v and v terms. Keep in mind that from (17) the final remainder R from Z =Y + R
is R = O,[n™Y?m=Y2 4 n=32m 4+ m=32 + (m/n)?*<]. T will keep the n'/? out front, so
that means that anything in © — Ov + ©v? that is O,[n"'m™2 + n=2m + n=Y2m=3/2 +
n~'2(m/n)**¢] will end up in the remainder term, and thus can be suppressed; but anything
bigger must be kept. It turns out that every term in ©v3 (and consequently any higher
order terms in the expansion) is small enough to go in the remainder. Also note that the
biggest term in O is Az = O,(n"'/2), shown in (13), so any terms in v and »? that are
O,[n™Y2m=12 + n=32m +m=32 + (m/n)**¢] can be put into the remainder. Also note that
(a1/(pg(p)) = =1+ O(n~') as shown in (45). So some algebra is needed. Starting with the
implicit definitions of © and v from (36), the individual terms in Z can be simplified and

calculated.

O = (A2 + Az)(—a1/pg(p)) — (Ag + As)’az + Oy (n~?/?)

b
2pg(p)
(33) = (Dot Dg) + 5 (Bo + Ag)? + O, (n72),

v=——(—(ar/g(p) (A1 + Ag) — (m/n)(as/pg(p)) (A1 + Ay + 2A)

2m
+ O (71’3/27711/2 + n*5/2m2))

- (m/n)Qgng; +O{(m/n)** +n~1}
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(39) = g-p(A1+ Do) + (A1 + Ay + 289) + (m/n)?
+ Op((m/n)* +n V2m =12 fmn=3/2%),
2 _ m/n)4 n/m)2 a1 Py ) ,)? a1 a2 9 L 32
V= O((m /) + (om0 4 Aot 4 (220,07 + 0,0
+ Op((m/n)*m=Y2 4 (m/n)*n=12 + m=12n7Y2) 1 O,() x [first 3 terms—zero]

(40) = (n/m)*(p/2)*(A1 + A2)* + R.

Note that crossing out, as in A, means that all terms it would be a part of will end up
in the remainder. Sometimes these appear in HS88, though I believe they should all be in

the remainder.

[l () 5 (B4 8a) = (ea/20(p) A1+ Do 2
+ Op((nm) ™2 4 /2 - (m /)24

— (Ag 4 Ag)*(az/2pg(p))
X [(m/n)2g;83 — (n/m) 2;(1])) (A1 + As) — (az2/2pg(p)) (A1 + Ay + 2A3)

+ Oy((m) ™2 4+ mn=32 4 (m/n)*)| + Oy(n ") x []
= (A2 + A)[ — (m/n)*(¢"(p) /69(p)) (a1 /pg(p))]
+ (Ao + Ag)(a1/pg(p))*p(n/m)(1/2)(Ar + Ay)
+ (g + Ag) (a1 /pg(p))*(az/2a1) (AL + Ag + 2A3)
+ Op((nm) ™12+ mn= 4 (m/n)?**) — [Oy(mn~*"(m/n)) = O,(mn~>?)]
+ (45 + As)*(n/m)(ara2/4pg(p)*) (A1 + As) — n~'°R
Ov* = —(n/m)*(a1/pg(p))*(p/2)* (A1 + A9)*(As + Op(n~'m'?)) + n~'°R

O — v +Ov? = —(a1/pg(p)) (A + As) — (a1/pg(p))(az/2a1)(LE + 28575 + A2)
(m/n)*(a1/pg(p))(g"(p)/69(p)) (A2 + As)

— (n/m)(p/2)(a1/pg(p))* (A + Az) (A1 + Ay)

— (

— (

+

al/pg CLQ/QG&)(éM—f— 3A2A3 -+ AgAl + 2A2)
n/m )(az/2a1)(p/2)(a1/pg( ) (A1 + Az)AZ



(41)
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— (n/m)*(a1/pg(p))*(p/2)* (A1 + A5)*Ag +n~'°R
= (AQ + Ag) + (CLQ/2G1)(2A2A3 + Ag)

— (m/n)*(¢"()/69(p)) (A2 + Az) — (n/m)(p/2)(Az + Az)(A1 + A)

— (a2/2a1)(3A2A3 4+ A3A1 + 2A§)

— Op(n'm 2 + (n/m)?(p/2)* (A1 + A2)’Ay + 2R
= (D2 + Ag) — (m/n)*(g"(p)/69(p)) (A2 + As)

— (n/m)(p/2)(A1dz + A3) — (n/m)(p/2)As(A1 + As)

+ (a2/2a1)(2A2A3 + Ag) - (a2/2a1)(3A2A3 + A3A1 + 2A§)

+ (n/m)*(p/2)* (A1 + D2)?Ag +n~'°R
= (A2 + Ag) — (m/n)*(g"(p)/69(p)) (A2 + As)

— (n/m)(p/2)(A12s + A3) — (n/m)(p/2)As(A1 + As)

— (a2/201) (D25 + AF + AsAr) + (n/m)*(p/2)* (A1 + A2)*As + 17 °R

Note: I think the second by term of (as/2a;)A3 is incorrectly included in Hall and Sheather
(1988). The term instead should be in R since n'/2A2 = n'/20,(n"?m) = O,(mn=%/?), which
is in R. Even if the term were included, there is another identical but negative term that
would be included, so they would cancel anyway. (The positive term is from O, the negative
one from ©v.) Of course, my claim is that this is a higher-order term anyway, so the effect

of including it should be negligible.
And now with ¥ added,

@+ = (B 80) + 5280+ AP+ 0,(075%) 4 0)

n
m

n
X [%p(Al +Ag) + (a2/2a1)(Ar + Ag + 20)

+ (m/n)zg;((z; + Op(n~2m=12 ¢ mn—3/2)]

(p/2)(A2 + Ag + \I])(Al + AQ) + <a2/2a1)(A2 + A3 + \I’)(Al + AQ + 2A3)

29" (p) 2
+ (A2 + Az 4+ ¥)(m/n) 690p) T (n/m)(p/2)(az/2a1)(Az + A3)" (A1 + As)

+ (az/QGI)Z(AQ + A3)2(A1 + AQ + 2A3) + (m/n)2(a2/2a1)

~—

q"(p
g(p

(Ag + Ag)?

D
~—

+n 20,0V Pm T2 mn )

— 2 (p/2)(0 + g + V)(A1 + Ao)

+ (a2/2a1)(2A§ + 3A3A2 —f- AgAl + W(Al + Ag + 2A3) + Ag =+ A1A2>
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+ (Ag + Az + \P)(m/n)Qgg—E];; +n7120,(n7V2m Y2 T2,

(O + W) = <(A2 +4s) + %(AQ +Ag)° + O0p(n ™) + q;)
1
X [%p(& + Ag) + (a2/2a1)(Ar + Ag + 24;)

+ (m/n)2%gg + Op(n_1/2m_1/2 + mn—3/2)}2

= (A3 + U+ O, (m'*n7h))
X [(n/m)2(p/2)2(A1 + A9)? + Op(n~ ' + (m/n)* + m~ 2?4 m_l/z(m/n)Q)}

= (A3 + W) (n/m)*(p/2)* (A1 + 8g)* + 07 /2R.

O0—-(0+ Vv + (0 + U)?
= (Mg + Ay) + 2‘%@2 + A3)2 + O, (n~3/?)
1

~ [ 0/2)(0 + 25+ 9)(A1 + Ag)
+ (ag/2a1)(2A3 4+ 3830, + AzA; + U(A; + Ay + 2A3) + AS + A Ay)

+ (A + Az + \P)(m/n)2—g Ep)) + n’l/zOp(n’l/Qm’l/2 + mn’3/2)]
g\p

+ (Ag + \I/)(n/m)z(p/Z)z(Al + A2)2 + n_l/zR

= (@0 80 (1= (/P ) WP 2 2) (o) A + )

— (/D)2 + VYA +2y)

+ %(A% F 200 A5 + A2 — 2AZ — BALA, — AyA,
1

— W(A] 4 Ay +2A3) — A — A1)
+ (n/m)*(p/2)%(A1 + Ag)*(As + U) +n 2R

29" (p)
69(p) )

= (Ag + Ag) (1 - (m/n)

_ w<m/n>zg£§ — Z0/2)(A1 + Do)z = L (p/2)(Ag + W) (A + o)
+ %(—AzAg — A3A; — V(A + Ay) — Ag —2A30) — n—l/zOp(mn_g/Q)

+ (n/m)*(p/2)° (A1 + D2)* (A3 + ) +n~°R
= (D + Ag)(1+0) + W6+ —((=p/2) A1 + (~p/2)A2) A,
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n
+ —(=p/2) (A1 + Ag)(As + V) — _(Al + Ag)(Az + W)
m 2aq
(42) + (n/m) (p/2) (A + AQ) (As+ V) — (a2/2a1)(A§ +2UA;3) + nil/zR,

where § = —(m/n)? ggpg as in HS88. This matches (15) and (16).

Writing (a1 /pg(p)) = —1 + R, I now show that Ry = O(1/n), as is used to simplify (38)
and (39). Recall from (11) that g = G’, where G = F~!, where F(-) is the population cdf.
Thus, in terms of F' and f,

d |
) =" = W) I @)
and thus
(44) 9(p) =1/ (&)

Also recall from (11) that H(z) = F~'(e™®), and

=H'( i) =—exp(=Y_5/f(m)

jzr j>r
by the chain rule and definition (6) of n, = F~'(exp(—>_..,j")). Last, recall from (7) that
Yised t=n(p™) = (np)Hew — 14 5(1 = p)] + O(n~?). Thus,

—exp(= Y j7) = —exp(lnp + (np) Hen — 1+ (1/2)(1 = p)] = O(n~?))

j>r

= —exp(Inp) exp((np) e, — 1+ (1/2)(1 = p)] = O(n™?))
= —p[1+ (np) Hen — 14 (1/2)(1 = p)] + O(n7?)],
ar = —pg(p)(f(&)/ ()1 +O(n™),

and recall from (8) that 1, = &,+n"'[e, —1+3(1—p)]/f(&)+O(n~2). Since f(n,) = f(&)+
f’(fp)[n_l[en —1+ %(1 _p>]/f<§p) "‘O(n_Q)]’ then if f" is bounded, f(ﬁp)/f(fp) =1 +O<n_1)7

and consequently (plugging into above) a; = —pg(p)(1 + O(n~ 1)) and
(45) a1/pg(p) = =1+ 0(n™),
(46) (a1/pg(p)* =1+ 0(n™").

Next are proofs that as = O(1) and az = O(1).

From (11), H(z) = F~'(e™®) = G(e™*), and the first derivative is H'(x) = g(e™*)(—e™*)
using the chain rule and since ¢ = G’. Thus,
(47) H"(z) = (—e "g'(e™"))(=e ") +gle e " =g/(e")e ™ + ge")e "

— g/(e—z>6—2m . H’(l’),
H”/(ZE) — g//(e—;vx_e—m)e—% + g/(e—x)(_2e—2m) _ H”(l‘)
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= —¢"(e7)e" = 2¢'(e7")e " — g'(e™")e ™ + H'(x)
- g e = 3 () 4 H )
= —¢"(e e — 3H"(x) — 3H'(2) + H' ()

(48) = —g"(e7")e™ = 3H"(z) — 2H'(x),

(49) ag = —g"(e” Tizrd e 30z d T _ 3ay — 20y,

(50) ay = ¢ (e Zizrd e izl _ g

The task is now to show that the ¢’ and ¢” terms above are O(1), since a; = O(1) per (45)
above. Note first that e=* € (0,1) for > 0, so those objects are both O(1), and thus ¢’ and

g’ are the critical terms.

1
g(x) = FF1(0) from (43),
S SV (C iul)
PO = O = )
51) = P @)FE @) and
e~ YisedThy — f/(np>
a T THE )P

which is O(1) as long as f'(n,)/f(n,) = O(1), which is true if f'(§,) < oo and f(§,) > 0, as

assumed.

g"(x) = —f"(F(2))g(@)[f(F (2))]
+ (= E @) (3)E @) (F (2)g(w)
(52) = [f(E @) (=f"(F (@) + 319 ()] f(F (), and
g"(e” %=y = = f" () /1f (mp)]* + 3lg'(e7 22 ) f () = —f"(1,)O(1) + O(1)O(1),

which is O(1) as long as (additionally) f”(§,) < 0o, as assumed.
As stated in HS88 (and with this e different than the one use above with ©), under the
restrictions n” < m < n'"7 and 0 < e < 1/6, (17) “entails

(53) R = Op{[m™" + (m/n)*Jn""},”
which “may be strengthened to

P{R| > [m™' 4+ (m/n)*n"¢} = O(n™), all 0 < { < en and all X > 0,
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on noting that by Markov’s and Rosenthal’s inequalities (Burkholder (1973), p. 40),

2
Z P(lnm ™A, > nf) 4+ P(In'?As] > n¢) = O(n™), all e > 0 and all A\ > 0.”

i=1
They continue, “Therefore the theorem will follow by proving that result for Y rather than
for Z. Since A1, Ay and Ajz are independent and have smooth distributions, it is elementary
(but tedious) to estimate the difference between exp(—t2/2) and the characteristic function
of Y, and then derive an Edgeworth expansion by following classical arguments, as in Petrov
(1975) or Bhattacharya and Ghosh (1978). To simply identify terms in the expansion here,
only moments of Y are needed,” the result of which is, as stated in (3.2) of HS87,
(54)  El(=p7'Y)] = 21(0) + z2(0) + 2(0) + O{m™2 - m™2(m/n)*},
Z21 = TLZ/ZE[{(l + (5)(A2 + Ag)}e], 29 = KHZ/ZE{(AQ + Ag)gilB},
1
23 = 56(4 — Dn'?E{(Ay + A3)2B?}.
To show the above expansion of moments of Y, first recall from (15) that
Y = —pn'?[(1 4+ 6)(Ay + Az) + B]  and
0 = —(m/n)*g"(p)[6g(p)] ", so
(=p 1Y) = ('2[(1 4 0)(As + Ay) + B])f
(55) =n"2[(1+6)(Aq + A3) + BJ".
Letting A = (1+6)(Ay+ A3), and Taylor expanding around A, also noting that (14 9)¢ =
1406+ (1/2)0(0 —1)6% + ... =1+ O(6), the expectation of (55) is
E (n'?[A+ B)Y) = E (n'/? [A" + (A" 'B + (1/2)¢(t — 1) A" 2B + Ry))
=F (ne/2[(1 +0)(As + Ag)]g)
+ E (nK/QE[(AQ + Ag)e_lB + O((SB(AQ + Ag)z_l)])
+ B ((1/2)0(0 — 1)n'P[(Ag + A3) 2B + O(0B*(As + A3)72)]) + Ro
= 21(0) + 22 (0) + 23(0) + O{m ™2 ™1 (m/n)*}
if the remainder terms from the second-to-last equality fit in the remainder from (54). Note
from (13), (14), the definition of ¥, and (16) that A; and A, are O,(n~'m'/?), Az =

O,(n12), & = O(n~'2), all b; coefficients are O(1), and consequently, starting from its
definition in (16), the order of B is

+ (n/m)?by(Ar + A2)*(As + W) + bsAs(Az + 20)
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= Op(m2'rf5/2 +n b m Y22 T2 7
(56) = Op(mn ™" +-m™' 207112,
since also Ay is of larger order than A, and thus (Ay + Az) = O,(n~/2). From its definition
n (15), clearly § = O((m/n)?). Thus,
0B = O((m/n)*)0p(m*n~>"% 4 m~2n~11%)
= O, (m*n ™2 4+ 0= 2m=12) (m/n)?)
n'?6B(Ay + Ag) ™ = nZ/ZOp((an_w2 + n_1/2m_1/2)(m/n)Q)Op(n_“_l)/Q)
= Op((m/n)* +m™"2(m/n)?)
n'26B%(Ag + A3) 72 = n26B(Ag + A3) 7! x (B/(Ag + As))
— Oy((m )+ V2 /n)) x Op((mn =52 4 =2V i 7112)

Q

" (m4n_4 +m3 2 (m Y2+ mPn2))

O

(M2t mn ™%+ mOn 8 )

(
(
(
p(nm(Az +404)7°B%)
(
(
(m

QO

, n3/2( 5/2 +m” 1/2 n—1/2)3)

: n3/2( 32 T2 T2 112 +m6n715/2))

QQ

., =32 4 mn=? 4 m "2t mSn ).

From above (from HSS88), it was shown that O(mn=3/?) = o(m™" + (m/n)?), and thus

O(y/n/m) = o(1) and O(m?*n=3/?) = o(1). Thus, O(m*n=* = O(M**n"2m>?n=2) =
O(m**n=2m*n=3/2(m/n)"/?) = O(m*?n=2)o(1)o(1) as desired. Also not immediately appar-
ent is that O(m%n=%) = O((m/n)*(m/n)*) = o(1) x O(m*?n=2)o(1)o(1) using the previous
result.

Now I verify the HS88 statements that A;, Ay and Az are independent with zero means,
and also that E(A?), E(A2) both equal m(np)~2(1 + O(m/n)).

Clearly the A; are mean zero since they are sums of mean zero random variables (the V});
they are independent since they include mutually exclusive sets of the V; and the V; are
defined to be independent.

For the second moment of A; (and A, will approximate similarly),
r—1 2
sz |(557)

since E(ViVy) = E(V)E(V;) = 0,i #

gj

I‘M'
=i
=
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QMH

% since E(V?) = Var(W;) = 12 = 1.

Using Euler-Maclaurin,

m

YRRV DIVIIRV ) GRS
::Am“‘”““””“”*ﬂmv”+%r—m>)—1ﬁ-+oum<»

1 2
o O(n=3
2 _2mr + m? T+ 0™

=1/(r—m)—1/r+ (1/2)[(1/7”2)(1 —1+0(m/n))] +O(n™?)

TV (r—m) m/n
o =m0 = Gy
The second moment of A3 may be calculated using the same method:

Zl/] —Zr—l—m—iri)_Q

r+m

= —(r=m+2) 7+ (12

(14+ O(m/n)).

= /Os(r +m+ ) 2dr + (1/2)(n 2+ (r +m)~2) + O(f1(0))
=—(r+m+2)t
+(1/2)[n?p2(1 = 2m/(np) + O(m*/n*))] + O(n™)
=1/(r+m)—1/n+ (1/2)(np) 2 + O(mn=> +n"?)
= (n— (r+m))/(n(r +m)) + (1/2)(np)~* + O(mn~?)
=n(1—p)/(n°p +nm) — O(m/n*) + O(n™?)
_ (d-phn
n?p(1+m(np)~")
= (1—=p)/(np) x (L + O(m/n)) + O(m/n?)
(58) = (1= p)/(np) + O(m/n*) = (1 —p)/(np).
Back to the proof outline in HS88, but with the new U terms, with D; = n'/2A;,

2 = t{n V2 [p 2 B(DS ) + 205 (DY) /]

4+ O(m/n?)

+2m'p2by [E(DY) + BE(DS ) Wy/n] +n 2 E(DSTY) + 5E(D§‘1)\If\/ﬁ}
(59) + 00— )n"2p 2y (E(DSY) + E(DS)U/n) + O(mn ™2 + m~2n~1/2),
z3 = (0 — 1)m ™ 'b3p~2 [E(DS) + 2E(D§ ") Uy/n + E(DS %) Un]
(60) +O(m ™27V 4 m 72 4 (m/n)").
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To show (59), recall from (54) that zp, = (n2E{(Ay + A3) "' B}, where from (16), B =
ow + (n/m) (blAl -+ bgAQ)AQ -+ (n/m)bg(Al + Ag)(Ag + \If) + (n/m)2b4(A1 + A2)2(A3 + \I/) -+
b5A3(A3 -+ 2\11), with b1 = —p/2, b2 = —p/2, bg = —p/2 — (m/n)(ag/Qal), b4 = (p/2)2,

bs = —ag/2ay, and ¥ = v/(pg(p)v/n).
To start, pretend that only the Az from (A + Asz)*~!isn’t pushed into the remainder (not

actually true). Then, remembering that the A; have mean zero and are independent,
mPE{ACIBY = znf/QE{Ag—l[axp + (n/m) (b1 Ay + baAg) Ay
+ (n/m)bs(A1 + Ag)(Az + V)
4 (n/m)2ba(Ar + A)2(Ag + ) + bsAg(Ay + 2\1/)]}
— EnmE{Ag‘l [0 + (n/m) (b2A2) + (n/m)2by(A2 + AZ)(Ag + U)
+ 0523 + 26,040] }
= ﬁ{nl/ 2B(Dy ) (n/m)by E(A3) + (n/m)?baB(D3) E(AT + A3)
+bsnV2E(DST) + nt2E(DS 6w
+ (n/m)2b, (DY E(A2 + A2l /20 4 2b5E(D§)\I/}
= {02 a B(D§ ) m(np) (1 + O(m/n))]
+ (n/m)*b4 E(Dg)2[m(np) (1 + O(m/n))] + n~"/?b; E(D5™)
+ n'2E(DSY6V 4 265 B(DS) W
+ (n/m)*ba E(Dy)2[m(np) (1 + O(m/n))]n”Q‘I’}
— E{n_l/Q [P 2by B(DLY) + 265 E(DL)W/n] + O(mn*2)
+2m~'p by [E(DS) + E(D§)W/n] + O(1/n)
(61) o Y2h B(DEY) + 5E(D§‘1)\IJ\/E}.

Still to be shown are 1) the order of the third moment of Ay, 2) another term in 2, from
taking the terms in (Ay+A3) ™! with one Ay, and 3) that everything else is in the remainder.
First,

B(AY = B (fj f%-)

, since E(V;V;) = E(V,)E(V;) =0,i# j
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r+m—1 r+m—1

= > JPEWVS) =2 ) j P since B(V) =2.

Using Euler-Maclaurin,

r+m—1 r+m m

Z 1/5% = Zl/f—1/(7’+m)3:Z(r+@')_3—1/(7‘+m)3

:émv+xr%x+umxr@+v+mr%

—1/(r+m)’ +0(f(0))
= —(1/2)(r +2)7?' + (1/2)[r 7 = (r + m) ] + O(n ™)
= (1/2)r7* = (1/2)(r + m)~?

+ (1/2)[(1/7*) = 1/(r*(1 + 3m/r 4+ 3m? /r* + m? /r*))] + O(n™?)
= (1/2)[r 2 = 1/(r*(1 4+ 2m/r +m?/1?))]

+ (1/2)(1/7*)(1 — 1+ O(m/n)) + O(n™?)
= (1/2)[r*(1 — 1+ 2m/r + m*/r*)] + O(m/n* +n~*)
=r3(m/r) + O(m?*/n* + m/n* +n~%)
=m/(np)* + O(m*/n* + m/n* +n7%),

62 E(A3) = 2m (up)® + O ) = O™,
B(DE) = E((n25)") = w2 B(A)
=n*2m/(np)® + O(m?/n* +m/n* +n~)]
— 2y 4 O Pl 4 ¥ 4+ o)
= O(mn~%?).
Note that this is smaller than the result from earlier that Ay = O(m!/?n~'), which would
yield D3 = O(m?*?n=3/%), an additional \/m.
Second, to show the extra term in zy, from taking the terms in (Ay + A3)’~! with one A,,
(Ag+ Ag) = AL 4 (0= 1) AAL + O(AZAL?),
n*PE{(t — 1) A AT B}
- EnmE{(E — DALAL 2[00 + (n/m) (b Ay + baAg) A,
§ (nfm)bs(Ar + Ag)(Ay + )
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+ (n/m)?ba(Ay + Ag)*(As + U) + bs(A2 4 28, 7)] }
— EnmE{(é — 1)AAL2[(n/m)by A2 + (n/m)bsAs(Az + T)
+ (n/m)?by(A2 + A2)(Ag + T) + bs(A2 + 2A,7)] }
— (0 — 1)E{(n/m)52n€/2A2Ag—2A§ + (n/m)bsn'?Ag AL Ao (Ag + )
+ (n)m)?ban P Ay AL2(A2 4 A2)(Ag + )
b5 205052 (AF 4 2890) |
= ((0 - 1)E{m—1bzn1+f/2A§Ag—2 +m by 2 AZAL
+ m_lbgnl%/?AgAg_Q\P
i m_2b4n2+£/2A§A§_l 4 m‘2b4n2+€/2A§’A§_2‘Il}
— (0= ) E{m~hyn! D2 Dl
L m DR A (DE 4 D)
+m—2b4n2+z/2—(e—1)/2A§(Dg—l n Dg‘Q\P\/ﬁ)}
— 00— 1){m‘1b2n2E(A§)E(D§_2)
+m hn®PE(AY) (B(DSY) + E(DS?)Uy/n)
+m 2?2 B(AY) (B(DS™) + B(DS ) wvn) |,
and using (62),
— 00— 1){m_1b2n20(mn_3)E(Op(1))
- m b0 m(np) (1 + O(m/n)) (E(DY™) + E(Dy?)Uy/)
+ m_2b4n5/20(mn_3E(Op(1))}
— 00— 1){0(n—1)0(1) + by V2p 2 (E(DS) + E(DE2)Wv/n)
+ O(mn=3/?) 4 O(m_ln_1/2)0(1)}
= (L = 1)~ V2p~%bs (E(D5™") + E(D57*)Wy/n)
+ 0 +mn~? 4 mIn71/?)
= ((( = 1)n~2p~%s (BE(D5™") + E(D57%)y/n)
(63) + O(mn_?’/2 + m_1/2n_1/2),

as in (59).
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Third, everything else should be in the remainder. The biggest term in B will be the b3

term. Then,

(-1
~ P E(AY) E(AG?) (n/m)
= (n/m)n*20(mn=3)0(n~-2/2)
=0(n),
and thus all smaller terms will also be in the remainder.

For 23, recall from (54) that z3 = 10(¢ — 1)n*?E{(A, + A3)*2B?}. Ignoring remainders
for now, note that the largest term in B? is the square of the b3 term, which is (n/m)?b3(A; +
Ay)2AZ2. Since Ay I Ay and E(A?) = E(A2) = m(np)~2(1 + O(m/n)) as shown in (57),
then E(A; + Ag)? = E(A?2 + A2) = 2m(np)~2(1 + O(m/n)). Since Ay, Ay L Az, this term
can be pulled outside the expectation. If all that remains of (Ay 4 A3)*~2 is the A5™? term,
then

00— 1)n*?E{(Ay + Ag)* 2B}

N
w
Il

00 =2 E{(A9) 2 [(n/m)*B3(Ar + A2)*(As + )]}

NI N RN =N

00— D)2 (n/m)?D2E{ (A1 + Ay)PYE(AS + 20ALS 4 B2AL?)

00 — D)n?(n/m)*b22m(np)"2(1 + O(m/n))E(A§ + 20A5 + T2AL2)

[

(0 = 1)m™'b3p~2 [B(DS) + 2B(D5 ) Uv/n + E(DS)¥%n] + O(n™"),

matching (60).

Now it must be checked that all remainders are indeed of the proper order. First, look at
the next-biggest terms in B2. The product of b3 and b5 terms is expectation zero due to the
(A1 + As) in the b3 term. The by and b5 terms are of the same order, so just consider bs.
The relative order of magnitude of by and b5 terms depends on the relation of m and n, so
both the b3b, product term and the bg term should be checked to be rigorous.

For the 02,

n?E(AS20EAL) = E(n?0,(n~2/2) = O(n™t) = O(m™2n~1?),
For b3by,
n?E(ALbs(n/m)AsAsbs(n/m)* AJAz) = E(n'*n*mAJAY)
= n'm ™ E(A3) E(Dj)
= O0(m™H0(1) = O(m™2) = O(m™=>/?).
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Second, the additional terms that come in when v # 0 must be checked. It is sufficient
to check the square of the 0¥ term along with its product term with bs; if these are in
the remainder, all other product terms will also be in the remainder since all square terms
aside from b2 are in the remainder. For the square term, (§¥)? is of the order O(m*n=>),
so n'2E(A5?)(0%)? = O(nm*n=>) = O((m/n)*) = o(m?/n?), the last expression being the
remainder in (65). For the product term with bs, from the b3 term there will be lone A; 4+ Ay,
whose expectation is zero, so the term will evaluate to zero.

Third, note that (Ay + Ag)*? = AL2 + O(A,A5™3). Checking against the biggest (b2)

term in B2 (thus other terms will only be even smaller),

WP B{ DA (n/m)? AJAZ} =m0 P E(AS E(AG )

S

m*QnQH/an*?’n*(@*l)/Q)

(m—1n2—3+1/2>

m—ln—l/Z)

= O(m’lﬂn’l/z).

Il
S O

Using results going back to (54) , and noting that by = by + O(m/n) = —(p/2) + O(m/n)
and b2 = by + O(m/n) = (p/2)* + O(m/n),

otz = £{n*1/2 (P25, (DY) + 2bs E(DL)U/n] + 2m~p~2by [E(DL) + E(DL )0/
+ V2 B(DE + 5E(D§*1)\If\/ﬁ}
+0(0 = V)~ 2p2by (B(DS™) + E(D5 ) Uy/n)
+ (¢ = 1)ym™'b3p 2 [E(Dj) + 2E(D5 ") Uy/n + E(D5 ) Un]
+ O(mn=?2 + m= V272 m =2 4 (m/n)?)
- n_l/zf{p_2b2E(D§_1) + 2bs B(DY) T/ + by E(DE)
(0= 1)p 2 (B(DS) + B(D§ )W) b
+ m—lf{zp—2b4 [E(DY) + E(DS™)0/n]
+ (0= 1)b3p~? [E(Dg) + 2E(Dy ") Wy/n + B(Dy %) Wn] }
+OCE(DS U0+ O(mn ™% 4+ m™ P2 4 m ™2 4 (m/n)*)
—n 2 p(—p/2) E(DS™) + 205 B(D) W/ + bs E(DE)

+ (€= Dp~3(=p/2 + (m/n)bs) (E(D™) + E(D§2)Wy/n) |
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e 2p72(p?/4) [B(DS) + B(D§ )/l
+ (= 1)(p*/4+ O(m/n))p~* [E(DS) + 2B(D{ )0/ + E(D5)¥%n] |
+ 8E(DS YU/ 4+ O(mn ™ + m™ V22 4 m=32 4 (m/n)*)
= 0 2ed (= 1)(=2p) " B(DS )W/ + (= 1)(=20) 7 + (~2p) | B(DS)
+ 2bs B(DY) T/ + b5E(D§“)}
+m ] (= 1)1/ E(DS) W+ BDEH((E = 1)(1/2)%vn + (1/2)0 )
+ B(DY)[(1/2) + (€ = 1)(1/4)]}
+OCE(DS ) U/n A+ O(mn =2 4 m™ 22 4 m=2 4 (m/n)*)
—n 20— (€= 1)(2p) " UVRE(DS ) — £(2p) ' E(DS)
~ (az/ar) B(D§)WV/n ~ (az/2a1) E(D§™) |
+ m—lf{nglE(Dgﬁ)\lﬂn + %mﬁE(Dg—l) + gE(Dg)}
(64) + 8(E(DS) TR+ O (mn™2 + m™ 272 732 4 (m/n)?)

Clearly, O(n~"2m~12) and O(m=%/2) are o(m™"), and O((m/n)*) is o((m/n)?). From the
restrictions given immediately before (53), O(mn=%/2) = o(m~'+(m/n)?) , noting that there
was a O(mn~%/2) in the original remainder R right above that. This is consistent with the

1/2

final result from HS88 at least, since the rate of m is faster than n'/2, so mn='/2 is bigger

than O(1), so O((m/n)?) = O(mn=32mn=Y2) > O(mn=3/2).

E[(=p~'Y)] = E[(1+ 6)(D2 + Ds)|
+ n*mf{ — (€ =1)(2p) " U/nE(D{?) — £(2p) ' E(DS)

— (az/ar) B(D§) W/ — (aa/2a1) E(D5H) |

+ m—lz{nglE(Dg-Q)\lﬂn + gtlf\/ﬁE(Dg‘l) + gerlE(Dé)}
(65) + 8CE(DS ) U/n+ o (m™" + (m/n)?) .
As in HS88, let
(66) K=[p1-p)%,  L=-[p/(1-p)]"(1+06)(Ds+ D),

and as they state,
(67)  E(D3F)=[(1—p)/p] (2k)(k12) " +0(mY),  E(DPF) =0(n'?),
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and Ds is asymptotically N (0, (1—p)/p). Multiplying equation (65) by {—[p/(1—p)]*/?}*(it)¢ /¢!
and adding over ¢, the formal expansion is

(68) E(e™) = E(e") 4 n~2ay(t) + m ™ as(t) + das(t) + ofm™ + (m/n)?],
where

o (t) = e 2

(% —bs(1 — p>> (p(1 = p)) "2 ((@t)* + (it))

+ (it)u/n (2’)5 B ﬁ> ]

1
as(t) = e_tZ/QZ

(it)* + (it)? (3 + qﬂnlL) —2((it)* + (it))¥/n (1 fp)l/zl ,

- P

as(t) = e P/2(it) (—\If\/ﬁ (1 Y p)m> .

To see this, the LHS of (65) becomes
E[(=p™'Y) [—{p/(1 = p)}' 1 it)" /00 = BI({p(1 — p)}/2Y))(it)" /01 = E(K")(it)" /¢,
so that
E(K)(it)" /00 = [-{p/(1 = p)}*]'(it)" /0
x { El(1+8)(D; + Dy))"

2 (0= 1)) UVRE(DS?) — ((20) B(DS)

— (az/ar) E(D5) W/ — (az/2a1) E(D) |

-1 ¢ (41
+ml [TE(Dg—Q)\Iﬂn + S UVRB(DL) + %E(Dg)}

+ OCE(D U/ + ofm ™! + (m/n)?]},
E(L)it) /0 = [~{p/(1 — p)}/2)(it)" /0 x E[(1 + 6)(Dy + D3I,
B(KY (i) /0 = E(LY)(it)! /el
+ (~p/(1 - p)}?)" (it) /0
x {7120 = (0= 1)(2p) T UVRE(DS ) — 2p) " B(DS)

— (az/ay) E(D5) W/ — (az/2a1) E(D) |

(-1 ¢ (41
+ml [TE(Dg—Q)\Iﬂn + S UVRB(DL) + %E(Dg)}
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(69) + SCE(DS Y U/m + ofm™ + (m/n)Q]}.

The characteristic function of K is, equivalently, E(e") or the sum of the LHS immedi-
ately above from ¢ = 1 to co. On the RHS, the sum of the L terms will be the characteristic
function of L, which can also be written E(el).

Recall that for a standard normal random variable, the odd moments are zero, and the
even moments are the double-factorials 1,3-1,5-3-1,..., (¢ — 1)!!,... for even moment ¢,
noting the equivalent formula (2k — 1)!! = (2k)!/(k!2").

Next, I look at each additive term separately, first the terms without ¥, and second the
new terms that only appear when v # 0.

Start with part of the m~! term: m=1(1/4)((it)*/¢")[—{p/(1—p)}}/?)4(¢+1)E(DS). Using
the moments of D3 from (67), the odd moments are all O(n~'/2), so when multiplied by the
leading m™!, they will end up in the o(m™') remainder. The O(n™!) error from the even

moments also ends up in the o(m™!) remainder when multiplied by the leading m™!

, s0 I
can focus on just the even moments and rest assured that the remainder works out.

Plugging in from (67) and summing over /£,

Z [—{p/(1 = p)}?) £t + 1)E(D)

=

00 i 2k
:m‘liZ(?ﬁ![p/<1—p>]k<2k><2k+1>[< )2

“ (2k) w2t
_ ml}l i(it)%(% + 1)% - ml}l 2 %
/2 _ p(etNODY — (2;)2 + (21343 n (153615 T
S
(71) (it)%e /2 = i T ¢ 1)>,2k -,

oo
'lt 2k—4

Z 'lt 2k2 Z Zt 2k2 1) . i ('lt)Zk . 4i
_1|2k1 _1|2k1_ (k )|2k2_ _2|2k2
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N S A Sl
= (it)?*(2k + 1 = (it 2”“2
Z 1)l2k-1 :Z l2k 1 32 |2k 1
k=1 k=1

(it)*e 2y 3(it)%e —t? /2

and thus combining these,

o0

S m (1= g + 1) B (DY)

=1

(73) [(Nf)4 SR 3(it)%e ).

The other terms that are the same when v = 0 are the n~'/2 terms in (69) without W.

Y =p/ (L= p) Y1) bt E(DST) — (2p) P E(DST)]

(=1

Mg

{I={p/(1 = )P )40 / 2k + 1)

e
i
o

X [bs(2k + D E(DF) = 2p) 12k + 12E(DF ]+ 02

Mg

{ = /(1= p)YHD/2(0) D 2k + 1)

iy
o

X [b5(2k +1D[1 - p) /p]kH% — (2p)7'(2k + 1)?[(1 — p)/p]* f@l} }

SICEL [(2p)1(2k U
— bs(2k + 1)[(1 = p)/p]"? 2k + <12)]|€(Zi)1')|2k+1]

o0

= (i) <2k+1>[ M2k +1)%[(1 —p)/p]_mm

k=0

2k + 2

— bs(2k + 1)[(1 — p)/p]l/zm
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= (it) > (it)* [<1/z><2k F DI - P
2k + 2

— bs(2k + 1)[(1 —

p)/p]mm

(it)**[(1 — p)p]

NE

— (it)

>
Il
o

{(1/2)(% +1) k|12k bs(1 — p)(2k + 1)(2k + 2)

= [(1 —p)p)"2(it)

oo o0 1
§ 2k E 2k

1
(k+ 1)!2k+1]

L=, g (2(k —1) +1)
x {52(”) (k=1) T

P G b B 2)}

((k — 1) + 1)126-1+1

1 N 2k C@k-1 N 2k (2k — 1)(2F)
{2 it)? kz (k —1)126-1 K12k
Recall from (72), (70), and (71) that

(it)**2(k — 1) A —t2)2 —2/2 _ — (it)** N2 i2ja - (it)%*
Z—(k:—l)!Q’f—l =)t et =) e 0P =) e

k=1 k=0 k=1
so that

= 2k—1 = (i)*2(k—1) <  (@)*
2N G~ e T2 e
_ (Zt)4 —t2/2 (lt>2 —t2/2

(it 2 (it)? + 1),

i (it)*"[2K][2(k = 1)] _ i (it)**[2k][2(k — 1] _ i (it)**[K][(k — 1)]

k\2k k!2k k12k—2
k=0 k=2 k=2
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'Lt 2(k—1)

e (i) 400
:(Zt> Zwm_ Z _1|2k 1

k= k=1
(Zt)46 2 /2

.1 Z(it)Q’“—<k 2k _. ! — = Z (&) ,5,2212 ) (i)? (it)2e 2 ((it)? + 1)

= P2((it)? + 1).

Thus,
= 2k(2k )(2k) 2k4k:2 —2k o~ g (4KP —4k) + 2k + 1) — (1)
D (it k;'2k =D (0" = = 2_(i) 12k
k=1 k=0 k=0
= (it)'e ™ 4 (i) + 1) — e,
and additionally,
11 & 1) 1 «— (2k — 1)(2k)
1/2 2k 2k:
[(1 = p)p]2(it) {2 E _1'2“—(951— 2; e

=[(1=p)p]” 1/2(Zt)

X {% ,1 5 [(it)ze_tQ/Q((it)g + 1)}

= [(1 = p)p| 27/
s { GG 1) — ba(1 = p) [(60)° + () (1) + 1) — ()] }
= [(1—p)p) et/
< {3 [P + 1)) — b1 — p) (00 + (Git) + 1)) — (1)) }
= (= phpl 2L 2 (G0t 4+ 0] — bo(1 ) [0+ (i1)] }
(74) = [(1 = p)p)]7M2[(1/2) = bs(1 = p)](it) [(it)* + 1] /2.

Now for the terms involving W,

(9] i ¢ £/2
S UL (7)) e e - ) e vaE(Ds )

(=1

[(it) e/ 4 e ((it)? 1) — 2] }

00 i £/2
S N ) DL E (1) - vews)
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= (@), g 1—p\*" (2k—2)
-3 G (7)) eves-n-(58) G

P o=, o (2 — 2)!(2k)(2k — 1) 1
=M= ;(Zt) (2k)! (k — 1)l2k—1

P~ ()
=W 2 (k — 1)l2k—1

k=1
n_l/2\If\/ﬁ(2p)_11%39(%)26_1&2/2
(75) = —n VP (it)Pe 2,
2(1-p)

using (70) for the second-to-last line.
Similarly to the derivation of (75),

1
(76) - m—l-w2n1L<it)2e—f2/2.

— 1l 1—0p
- o0 it ¢ £/2
= a3 S () esy)
=1
~(@* (p \F L—p\" (2b)!
=[A — ) (2k) | —
[];(Qk:)' 1—p (2k) P K12k
o (it)2k
=[A
| ]; (k — 1)12k-1
(77) nY22bs W /n(it)?e 12,
again using (70) for the final line.
For the final m™! term, similar to (74),
00 ( D £/2 - 1 -
=1

—(1/2)m ™ U/n/p/(1 = p)[(it)® + (it)]e "/,
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For the ¢ term, i.e. the (m/n)? term,

00 it)t £/2
GOy (ﬁ) 50U /nE(DS™)

(78) =:—6wvﬁi(Tfl—)U2uwe—”“,

using (70) for the last line.
Summing the n~/2 terms yields a4 (¢) as in (68), and similarly for the m™" terms to get

as(t) and 0 term to get as(t).
The three functions a4 (t), as(t), and asz(t) in (68) are Fourier—Stieltjes transforms of

1) o) == [uva (2 - st ) 2= b o - ) 0o

—U?p

(80) as(z)

1/2
LA 2U+/n (L) 22— 23| ¢(2), and
—p lL=p

ww( pqua

respectively. Note that when v = 0 and thus ¥ = 0, these reduce to the functions found in

HSS8.
Define e */2(= [*_¢(x)e**dx) as the Fourier—Stieltjes transform of the distribution ®(z).

Note that the derivatives of ¢(z) are:

1
4

(81)  as(2)

o(z) = (2m) 2772

¢(2) = —2(2m) 2 = —2g()

¢"(2) = —p(2) — 2¢/(2) = —(2) + 229(2) = B(2) (=1 + 2%)

¢"(2) = =¢'(2) + 220(2) + 229/ (2) = 20(2) + 22¢(2) — 2°¢(2) = B(2)(32 — 2°)
¢""(2) =¢’(z)(3z—z )+ ¢(z>(3—32 ) = d(2)(3 =32 — 2(32 — 2°))

Also,
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:/ u-dv:uvﬁooo—/ v - du
= ()% — / o(x)(it)e™ dw = 0 — (it)e 7,

and it can be shown similarly that [*°_ ¢*)(z)e*dz = (—1)F(it)ke /2.
For simplicity of notation, write
ai(t) = e 2 [((it)® + (it)) Cy + (it)*Cy)
an(t) = ;letzﬂ [(it)* + (it)2Cs — ((it)® + (it)) C]
as(t) = e P2 (it) (—Cs).

Since ¢(z) — —(it)e /2, C5p(2) — as(t), and thus

a5(2) = Csd(2) = | W/ (1%9)/] o)

From HSS88, the inverse Fourier—Stieltjes transform of the terms in «4(t) without V¥ is

—[(1/2) = bs(1 = p)][p(1 — p)]/*2%¢(2).

45

Since the inverse Fourier—Stieltjes transform is linear, the new terms can just be added.

Since ¢'(z) — (it)2e /2, then Cy¢/(2) = —Chzd(z) — e *'/2(it)2C,. Adding together,

a1(z) = —C122¢(2) — Cyz¢(2)
1

_ [\m (265 _ —) 2+ 1(1/2) = bs(1 = p)lIp(1 — p)] 22| 6(2).

2(p—1)

Regarding ay(z), note that
¢ (2) = (it)'e ™72,
Oy (2) — C5(it)2e 72, and
Calg"(2) + ¢(2)] = —Cae™0/2 ((it)® + (it)) .

Thus,

(6" (2) + Cs¢/(2) + Culd"(2) + & (2)]]

<
)
—~
N
S~—
| |

¢(2) [32 — 2° — C3z + Cy2?]

g N o SN Ny e

¢(2) [(3 = C3)z + Cyz® — 2°]

[6(2)(32 — 2°) = Cs2¢(2) + Culd(2) (=1 + 2%) + ¢(2)]]
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1/2
= —¢(z) —\112n1 P, +2U+/n (%) 22— 23] )
-p -Dp

The characteristic function of L is
- . 101 . 42 _
(82)  E(e™)={1+4(it)> —n 1/26[29/(1 —p)"2l(L+p)/pl(it)* e 2+ O(8* + 07",

where the right-hand side is the Fourier—Stieltjes transform of

(83)  ®(2) = dz0(2) + n_m%[p/(l =PI+ p)/pl(2" = 1o(2) + O + 7).

To explicitly show the characteristic function of L, I take an expansion of the cumulant
generating function, and use the known mean, variance, and third moment to plug in, cal-
culating the third cumulant from the third moment. The fourth cumulant is also needed
to show the bound on the continuation of the series expansion. (Higher cumulants are not
needed since the mean value theorem can be used to express the rest of the expansion only in
terms of the fourth cumulant, as with f(z+a) = f(z)+af'(«*) for some z* € [z, z+a].) Note
the recursive formula and that the nth (non-central) moment p/, is an nth-degree polynomial

in the first n cumulants, {x;}}:

n—1
n—1
(34) e S () [T
= \m - 1

K1 = 1
1
Ko =y — (0) Ry = iy — (1)
Ky = iy — 3ttty + 2())°
K = iy — Apspy — 3(p5)” + 1205 (ph)? — 6(ph)"

p1 = Fa

py = Ko + K}

,ug = K3 + 3Kak1 + /151))

y = Ky + 4ksky + 3k3 + 6roK] + K]

,u'5 = K5 + 5Kkak1 + 10K3Ko + 10/433/{% + 15/@%/{1 + 10/{2143:{’ + ,%?.

L=—[p/(1—p)"*(1+8)(Dy+ Dy) from (66),
(85) B(L) = i, = 0 since E(Dy) = E(Dy) = E(V;) = 0,
= —(m/n)?q"(p)/(69(p)) = O((m/n)?) from (15).
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E[(As + A3)?] = ZV/J Vf]E[Zﬂ]:Zf?,

Z 1/5% = g (r+i) 2= /On_r(r +2)2dr + (1/2)(n ™2 +r72) + O(f1(0))

= (r+x)_1|8_r+0(n HN+0om?)=rt—nt+0n?
(86) =1/n((1/p) =1) + O(n™*) = (1 —p)/(np) + O(n™?),
and so the second moment is

E(L?) = iy = (p/(1 = p))(1 + 6)*E[(D2 + Ds)*]

(p/(1 = p))(1 +26 + 8*)nE[(Az + As)?]
(p/(1 = p)) (L + 20+ 6%)n[(1 = p)/(np) + O(n~?)]
(p/(1=p)(A+20+6%)[(1—p)/p+O(n")]
( )
(

p/(1=p))(1+28)[(1 —p)/p] +O(n™") + O(8%)
1428) +O(n~" +6%).

(87)

For the third moment,

E[(As + A3)°] = va ngE[Zj—f‘]:zZﬁ

Zn: 1/5% = Xoj(r I /Onr(r +2)3dx + (1/2)(n % 4+ r73) + O(f(0))
T =—(1/2)(r+2) 27"+ 0+ 0™ = (1/2)r 2 =202+ O(n?)
= (1/2) (/) = 1) + 0™ = (1/2) 5 (1 p) /12 + O(n ™)
- <1/2>%<1 ~ D)+ )/ + O,
BI(Ds + Ds)"] = 20[(1/2)5 (1 = p)(1 4 p)/1? + O(n ™)
(88) =021 =p)(1+p)/p* + O(n~*?),
and so
E(L?) = py = —(p/(1 = p))**(1 + 8)’ E[(D2 + Dy)*]
= —(p/ (1= )21+ 0@ (1 = p)(1 + ) /5 + O~

= —p*2(1—p) P V(1 = p)(1 + p)/p? + O(6n ™2 + n732)
= —(L+pp*? /P’ A = p)(1 = p)* 02+ O + 07t +n77?)
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(89) = V20 +pp2A - p) 2+ 082+ n7Y).

For the fourth moment,

E[(Ay + Ag)Y] = [(ZV/J> =F ivj“/jHB,

VEV?
R0 ZZW
B =03 > T 0L Y

n n 1 B
:6[ /x y2x2dydﬂc+0(n %)

LA D LN
[ o) or=o [ Gz
6{—(1/2)27*[} = (1/n)(=1/2)[}
=6[(1/2)r™* = (1/2)n"* = (1/n)(1/r) + (1/n)(1/n)]

p
)

= —(1/3)(r+2) [+ O(n~*) + O(n™?)
= (1/3)r® =3n 4+ 0(n™)

(1/3) 5((1/p") = 1)+ 0(n™)

= (1/3)ﬁ(1 —1°)/p* +0(n™") = 0(n™),
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and so
E(LY) = py = (p/(1 = p))*(1 + 6)'E[(Dy + Ds)"]
= (p/(1 —p)*(1 + 40 + O(5?)) [3 (%) +0(n™)
(91) = (1+46)3)+0(*+n1)

From above in (85), (87), and (89) were the results F(L) = 0, E(L?) = 1+ 2§ + O(6* +
nY), B(L?) = —n"Y2(1+p)p~2(1 —p)~/2 + O(6* +n~'). Note, then, that O((u) —1)?) =
O(4?). Expanding the log of the characteristic function of L, which is the cumulant generating

function,

th E :

Jj=1

Kj, k; = cumulants
= (it)lﬁ — (t2/2)li2 + (Z? Kz + (Z') Ky + ...
= (it — (0220 — (1)) + O 3t -+ 20)7)
(Zt)4 ! !
4! 371
=0 /2 + D+ W 3067+ s0
(it)

S iy + 8~ )+ )

+ = 3(ph)® + 12p5(p1)? — 6(u1)") + -

(1y — 4pzpe

E(e™) = exp{—(t*/2)(1 + (uy — 1)) +
= exp{—(t*/2)}
x exp{((it)*/2)(uy — 1) + < 5
= et {1 +((it)/2) (s, — 1) + (6) (1) + i
+O0((Hy — 1)%)  (since ® = ¢® + ze” + O(2?))
— PR (11)2/2)(28 + 0% + n7Y)

B iy + 0 0, 3% + )

(it)"
|

(1y = 3(p5)*) + ...

+ %(n_m(l +p)p V21— p) V24 0(6% +n7h))

s\4

¥ 0{%([(1 +46)(3) + O(8* +n )]

62+ 0} +0(6?)

it)?

—3(1+20+0

= P21 (102 /2)(26) + S (- V(14 plp (1= p) )
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+ 0{3(1 +46) —=3(14+46 4+ O(8* +n~ ")) +6° + n*l}]
+O0(n™* + 6%
— ) [1 +8(it)? — n‘lﬂé(pl”(l — )" (1 4 p)(it)*) + O{8% + n_l}]
(92) +O0(n™" + 6%,
verifying (82).

When simplifying terms, it can easily be verified that the Fourier—Stieltjes transform of

the expression in (83),

®(2) = 20(2) + 0~ 2(1/6)(p/(1 = p))*((1 + p) /D) (2* = 1)o(2)
= D(2) — 020(2) + C(2* = 1)¢(2)
— B(2) +09/(2) + C9'(2),
is e /2 4 §(—1)2(it)2e /2 4 C(=1)3(it)3e /2 = e ¥*/2(1 + 6(it)? — C(it)?), matching (82).
I trust from the proof in HS88 that the conditions are such that the remainder will be the
same in both equations.

Combining results going back to (68) and noting that bs = —(a2/2a1) = $+pg'(p)[29(p)] "+
O(n~1), the distribution function of K admits the Edgeworth expansion on the RHS of (10),

(93)
P(K < 2) = (2) + {02l (2) + m sy (2) 4+ (m/n) s, (2)}6() + ofm™" + (m/n)?},

where

o L NP e &) (_pfE) 1Y
1”()_6( p> p OV (1 &) 2<1—p>)

2 (25) (e )
(&) ﬂf(@)?z_zs]  and

1
U (2) = 1 {[p(l _ p)]l/zz p(1—p)
o) = LG TG G) ((_2116) )
" 6[f (&))" [p(1 = p)]+2)”

where the RHS of (93) is identical to the expansion indicated by (10).

.i.
1,y

equation (9), implies the final result in Theorem 2 in the paper.

Note that this is for 7,, not &, (hence uj . instead of uy.), but when combined with

To show the final result, the inverse Fourier—Stieltjes transformed functions can be added

to get the final answers since it is a linear transform (and consequently linear inverse).



APPENDIX OF PROOFS FOR UNIVARIATE CASE 51

Starting at (68) , adding the inverse Fourier—Stieltjes transformed functions of the RHS
leads to the distribution (cdf) of K:

P(K < 2) = (=) = 826(2) + 0™ {p/(1 = Y {1+ )/} (2 = 1()
+O0(* +n") + n_1/2a1( ) +m tag(2) + Saz(2) + o{fm~' + (m/n)?}

= B(2) + 06(2) (qf\/g (1 fp)m B z>
) [é (1 ﬁ19)1/2 : ;p( b= ¥n (265 (11—29)) ’

—((1/2) = bs(1 = p))(p(1 — p))1/2z2]

1/2
) 22— 23,
-Pp

—Un

+ m‘lqﬁ(z)i

pz+2\IJ\/_(

and using § = —(m/n)?< Gg(p) L and U = ~/(pg(p)v/n),

+o{m™ + (m/n)*}

= 46 + /T (=~ =)
o355 122
" (”pjég) - 2<11—p>) :
() (- 5e0)]
) m1¢fz>4 [_ [g<p>12792<1 RN [p(iv— PR 1

and using g(p) = 1/f(F~(p)), ¢'(p) = —f'(F~())/[f(F~ ()], and ¢"(p) = [—f" (&) [ (&) +
3[f"(&)1P1/1f(&)]° from (43), (51), and (52), and thus ¢'(p)/g(p) = —f'(&)/1f (€))%,

(2)3[f/(§p)]2 — (&) " (&) (Z . e ('Yf(gp) )

= ®(z) + (m/n)°¢ 6 )] i
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p

(&) ( pf&) 1 ) .

[f(ﬁp)] 2(1-p)

p
-3(25) " (e -»)

~1 1 29f(&%) 2 [f(fp)]Qz _ 3
" {[p }

o 1 pa=p2° " pi-p)

+o{m™! + (m/n)*}

= ®(z) +n 2] (2)(2) + (m/n)*us . (2)P(2) + m s, (2)¢(2)
+o{m™' + (m/n)*}
as in (93).
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