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Abstract

Using health as an example, we consider comparing two latent distributions when
only ordinal data are available. Distinct from the literature, we assume a continuous
latent distribution but not a parametric model. Primarily, we contribute (partial)
identification results: given two known ordinal distributions, what can be learned about
the relationship between the two corresponding latent distributions? Secondarily, we
discuss Bayesian and frequentist inference on the relevant ordinal relationships, which
are combinations of moment inequalities. Simulations and empirical examples illustrate
our contributions.
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1 Introduction

One common variable in health economics is self-reported health status (SRHS, a.k.a. self-

assessed health). SRHS appears in important survey datasets like the Panel Study of Income

Dynamics. Respondents rate their health from “excellent” to “poor” (or similar descrip-

tions), often with five categories; i.e., SRHS is an ordinal variable. Despite its imprecision

and subjectivity, SRHS has been valued for its synthesis of all dimensions of health, its

strong correlation with more objective health measures, its broad availability, and its use-

fulness over a wide age range; e.g., see Deaton and Paxson (1998a, §I) or Allison and Foster

(2004, p. 506).

SRHS aids the study of two types of inequality: between-group and within-group. The

first type is inequality between two (sub)populations (e.g., socioeconomic groups), where

one has “better” health than the other. The second type is inequality within a population,
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where a widely dispersed distribution represents big health differences among individuals

within the population.

More generally, our results help learning about inequality in any latent variable for which

only ordinal data are available. Our results can apply to health, happiness, bond ratings,

political indices, consumer confidence, public school ratings, and other topics. For health,

SRHS is seen as an ordinal measure of a latent (unobserved) health variable, and latent

inequality (not ordinal inequality) is of primary interest.

Distinct from most of the literature, our framework’s latent distributions are continuous

but not parametrically specified. We wish to avoid unrealistically strong parametric as-

sumptions while still allowing latent variation within each ordinal category; any teenager (or

parent) can confirm that the ordinal category “good” corresponds to a wide range of latent

feelings. Distinct from most (but not all) of the semi/nonparametric ordered choice litera-

ture, our objects of interest are features of the latent distributions themselves (rather than

marginal effects of regressors). Further, we treat statistical inference seriously from both

frequentist and Bayesian perspectives. In contrast, many well-regarded papers like Allison

and Foster (2004) only propose an ordinal relationship (or index) that can be computed in

the sample, without quantifying uncertainty.

Recently, in the context of happiness, Bond and Lang (2018) adopt a similar framework

to show the impossibility of comparing latent means from ordinal data (their Theorem 1).

They point out that prior empirical studies’ conclusions about mean happiness differences

were highly sensitive to their parametric specification (e.g., ordered probit). Complementing

their negative result, we provide positive results about what can be learned about latent

relationships.

First, we consider identification: given knowledge of two ordinal population distributions,

what can be learned about the corresponding latent distributions? Without a parametric

model, the latent distributions are not point identified. Further, the individual latent distri-

butions are not even partially identified (barring arbitrary normalizations). However, under

relatively weak conditions, the ordinal distributions rule out certain pairs of latent distribu-

tions. The resulting identified set of latent distributions can sometimes be characterized in

terms of inequality. For example, sometimes the first latent distribution is more dispersed

than the second, for every pair in the identified set. That is, we can learn from ordinal data

that one latent distribution has more within-group inequality than another.

Second, we consider statistical inference on the informative ordinal relationships found in

our identification results. These relationships hold in unions and/or intersections of param-

eter sets defined by moment inequalities. For frequentist hypothesis testing, we show how

to apply the intersection–union test and/or recent moment inequality tests. For Bayesian
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inference, given a posterior over the ordinal category probabilities, it is straightforward to

compute posterior probabilities of the ordinal relationships using our characterizations. With

iid sampling, for which the Dirichlet–multinomial model can be used, we discuss two types

of uninformative prior: one uninformative over the underlying ordinal probabilities, and a

further adjustment that puts 1/2 prior probability on the relationship of interest.

Third, we compare frequentist and Bayesian inferences. Even asymptotically, these can

differ significantly if the Bayesian prior on the parameters is uninformative, according to

Kaplan and Zhuo (2018). For example, Kaplan and Zhuo (2018) explain why a Bayesian

test of the null hypothesis of ordinal first-order stochastic dominance is more likely to reject

than a frequentist test, but the Bayesian test is less likely to reject a null of non-dominance.

In simulations, we find such results continue to hold even if the prior is adjusted to have

equal probability on the null and alternative hypotheses. Such an adjustment is argued to

be “objective” by authors like Berger and Sellke (1987, p. 113), although this is disputed by

authors like Casella and Berger (1987, p. 344).

Literature Surveying related methodological papers, Madden (2014) writes, “The break-

through in analyzing inequality with [ordinal] data came from Allison and Foster (2004)”

(p. 206), referring to their median-preserving spread. The median-preserving spread has

been applied to health data (as in Madden, 2010) as well as happiness data (Dutta and

Foster, 2013) and could be applied to any ordinal data, as with our methods in this paper.

Allison and Foster (2004) treat the latent distribution as discrete; only the cardinal value of

each ordinal category is unknown. Further, they assume the cardinal values are universal,

not differing among different groups. Inspired by the connection between mean-preserving

spreads and second-order stochastic dominance, they define (p. 512) one distribution to be a

median-preserving spread of another distribution if 1) they share the same median category

and 2) the first distribution can be constructed from the second by moving probability mass

away from the median. They show (Theorems 3 and 4) that the median-preserving spread

is equivalent to the first distribution being more dispersed (under certain cardinal measures

of spread) given any possible assignment of cardinal values to the ordinal categories. They

also show (Theorem 1) that first-order stochastic dominance is equivalent to having a higher

mean for every possible cardinal value assignment. Although insightful, these results all rely

critically on the latent distribution being discrete, an assumption that we relax. For our

dispersion results, we also relax the assumption that all groups map their latent values to

ordinal values the same way. Further, we fill a gap in their work by providing statistical

inference on the median-preserving spread, among other ordinal relationships.

Another strand of the literature contains a variety of inequality indexes. These summarize
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the ordinal probabilities into a single number measuring the magnitude of inequality. This

provides a definitive comparison between any two ordinal distributions (i.e., a complete

ordering), although only after choosing a particular index and weights. Recent work in

SRHS-based inequality indexes includes Abul Naga and Yalcin (2008), Reardon (2009), Silber

and Yalonetzky (2011), Lazar and Silber (2013), Lv, Wang, and Xu (2015), and Yalonetzky

(2016). Of these, only Lazar and Silber (2013) mention statistical inference.

The ordered choice literature is also related to our work, especially Section 4. Naturally,

our partial identification results require weaker assumptions than point identification results

for ordered choice models, even nonparametric ones. For example, to achieve nonparametric

point identification in a binary threshold crossing model, Matzkin (1992) assumes the latent

error is independent of the covariates (p. 241), which implies the covariates affect only the

location (not scale or shape) of the latent distribution, and the covariates are continuously

distributed (p. 241). Semiparametric models like in Klein and Sherman (2002) further re-

strict how the covariates can affect the latent distribution’s location. Our results allow any

relationship between covariates and the latent distribution, and they allow continuous, dis-

crete, or even categorical covariates. The only case where our assumptions are not strictly

weaker is with ordered choice models allowing stochastic thresholds (e.g., Gu, Jiang, and

Yang, 2018).

In different settings, others have considered identified sets for measures of dispersion given

partially identified cumulative distribution functions (CDFs). Blundell, Gosling, Ichimura,

and Meghir (2007, §5.3) examine whether the interquartile range of log wage has increased

over time; the partial identification is from missing data.

Most closely related to our approach, Stoye (2010) uses CDF bounds to derive bounds

for dispersion (spread) parameters. Interquantile ranges are a special case. Besides our

results on between-group inequality, the other biggest difference with Stoye (2010) is that we

compare two CDFs, neither of which is even partially identified since the thresholds mapping

latent values to ordinal categories are unknown. Stoye’s (2010) consideration of the “most

compressed” and “most dispersed” CDFs within the identified set is similar in spirit to our

approach to within-group inequality. The latent CDF bounds implied by ordinal data share

the structure of his equation (3) (with zero mixture probability). Although before his (3) it

says bounding CDFs must have finite expectation (which fails with ordinal data), it seems

that the first part of Theorem 3(i) (with p = 0) should still apply as-is to interquantile

ranges. Our results on interquantile ranges are derived more directly, using features specific

to the case of ordinal data, which is not mentioned by Stoye (2010).
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Paper structure and notation Section 2 connects features of pairs of latent and ordinal

distributions. Section 3 describes and compares Bayesian and frequentist statistical inference.

Section 4 comments on extensions to conditional distributions (“regression”). Section 5 and

Section 6 provide simulation and empirical illustrations, respectively.

Acronyms used include those for cumulative distribution function (CDF), Current Popu-

lation Survey (CPS), interquantile range (IQR), median-decreasing spread (MDS), median-

preserving spread (MPS), Panel Study of Income Dynamics (PSID), probability mass func-

tion (PMF), refined moment selection (RMS), self-reported health status (SRHS), and

stochastic dominance (SD), as well as first-order SD (SD1) and second-order SD (SD2).

Notationally, ⊆ is subset and ⊂ is proper subset. Random and non-random vectors are

respectively typeset as, e.g., X and x, while random and non-random scalars are typeset as

X and x, and random and non-random matrices as X and x; 1{·} is the indicator function.

The Dirichlet distribution with parameters a1, . . . , aK is written Dir(a1, . . . , aK), the beta

distribution Beta(a, b), and the uniform distribution Unif(a, b); in some cases these stand for

random variables following such distributions.

2 Identification of latent relationships

We first present assumptions, notation, and definitions, followed by various identification

results for latent between-group and within-group inequality.

2.1 Assumptions and definitions

Among the following, Assumptions A1 and A2 are always maintained; other assumptions

may be added for specific results.

Assumption A1 (latent distributions). The latent random variablesX∗ and Y ∗ have contin-

uous CDFs F ∗X(·) and F ∗Y (·), respectively, each with unbounded support, i.e., 0 < F ∗X(r) < 1

and 0 < F ∗Y (r) < 1 for all r ∈ R.

Assumption A2 (ordinal distributions). The observable, ordinal random variables X and

Y are derived from X∗ and Y ∗ as follows. The J ordinal categories are dentoed 1, 2, . . . , J ,

with no cardinal meaning. The thresholds for X are −∞ = γ0 < γ1 < · · · < γJ = ∞.

Using these, X = j iff γj−1 < X∗ ≤ γj, also written X =
∑J

j=1 j 1{γj−1 < X∗ ≤ γj},
so the ordinal CDF is FX(j) = F ∗X(γj). The thresholds for Y are γj + ∆γ, and similarly

Y =
∑J

j=1 j 1{γj−1 + ∆γ < Y ∗ ≤ γj + ∆γ} and FY (j) = F ∗Y (γj + ∆γ).
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Assumption A3 (location–scale model). There exists a continuous CDF F ∗(·) such that

F ∗X(r) = F ∗((r − µX)/σX) and F ∗Y (r) = F ∗((r − µY )/σY ); i.e., F ∗X(·) and F ∗Y (·) belong to

the same location–scale family.

Assumption A4 (latent symmetry). The latent distributions are symmetric: denoting their

medians mX and mY , respectively, F ∗X(mX+δ)+F ∗X(mX−δ) = 1 and F ∗Y (mY +δ)+F ∗Y (mY −
δ) = 1 for all δ ∈ R.

Assumption A5 (latent unimodality). The latent distributions are unimodal: the PDFs

f ∗X(·) and f ∗Y (·) each have a single local (and global) maximum.

●

●

γ1 γ1 + ∆γ γ2 γ2 + ∆γ

FX(1) = FX
* (γ1)

FY(1) = FY
* (γ1 + ∆γ)

FX(2) = FX
* (γ2)

FY(2) = FY
* (γ2 + ∆γ)

Figure 1: Example latent CDFs (lines) and ordinal CDFs (shapes).

Figures 1 and 2 illustrate the basic setup and implications of A1 and A2. Figure 1 shows

two latent CDFs (lines) along with the observable ordinal CDF values (shapes). Figure 2

shows the latent CDF bounds implied by observed ordinal CDF values (points) given thresh-

olds γj. If the γj were known somehow, then the latent CDF would be partially identified.

The points F ∗X(γj) = FX(j) would be point identified, with the bounds coming from CDF

monotonicity: for any x ∈ (γj, γj+1), F
∗
X(γj) ≤ F ∗X(x) ≤ F ∗X(γj+1).

To learn anything, something must be assumed about the thresholds γj in A2. For certain

results, we assume ∆γ = 0. This assumption is made (implicitly) in all the methodological

papers cited in Section 1; e.g., Allison and Foster (2004) assume each category has the same

cardinal value for both X and Y . Allowing ∆γ 6= 0 is called an “index shift” by Lindeboom

and van Doorslaer (2004), who contrast it with a “cut-point shift” that allows each γj to

change arbitrarily (between X and Y ).
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●

●

●

●

γ1 γ2 γ3 γ4

FX(1)
FX(2)

FX(3)

FX(4)

Figure 2: Latent CDF bounds given ordinal CDF and thresholds.

Some empirical health papers have looked for evidence of threshold differences across

groups. For example, in Canadian data, treating the McMaster Health Utility Index Mark 3

as latent health, Lindeboom and van Doorslaer (2004) find mixed evidence of different types

of shifts across different types of groups (age, education, etc.); e.g., “For language, income

and education, we find very few violations of the homogeneous reporting hypothesis, and in

the few cases where it is violated, this appears almost invariably due to index rather than

cut-point shift” (p. 1096). Other papers also report mixed evidence of no shift (∆γ = 0),

index shift (∆γ 6= 0), and cut-point shift; e.g., Hernández-Quevedo, Jones, and Rice (2005)

find evidence of an index shift (not cut-point shift) across waves of British survey data, and

the magnitude appears similar across socioeconomic groups.

The assumption of unbounded support in A1 actually matters for some results based on

the location–scale model definition in A3. For example, if the support is instead [a,∞) for

a ≥ 0, then increasing the scale parameter in the location–scale model (A3) may lead to

latent SD1, which is not true if the latent distributions have unbounded support. For this

reason (and others), we find unbounded support more reasonable.

Assumptions A3–A5 are additional semiparametric and nonparametric shape restrictions

that can yield certain additional results below. We call A3 “semiparametric” since the

location and scale parameters are sufficient to compare the latents distributions (in dispersion

and first-order stochastic dominance), but the base distribution F ∗(·) remains an unknown,

infinite-dimensional nuisance parameter. Location–scale models have been widely used in

economics and statistics, e.g., as motivation for mean–variance analysis of asset portfolios

and by Bond and Lang (2018) for their ordinal happiness impossibility theorem. As in the
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latter (but not former) example, we do not require finite variance or well-defined mean.

Assumptions A4 and A5 are primarily for results on dispersion.

We also use the following definitions.

Definition 1 (latent SD1). Latent X∗ first-order stochastically dominates Y ∗ iff F ∗X(r) ≤
F ∗Y (r) for all r ∈ R; this is written X∗ SD1 Y

∗ or F ∗X SD1 F
∗
Y .

Definition 2 (ordinal SD1). Ordinal X first-order stochastically dominates Y iff FX(j) ≤
FY (j) for j = 1, . . . , J ; this is written X SD1 Y or FX SD1 FY .

Definition 3 (restricted latent SD1). There is restricted first-order stochastic dominance of

X∗ over Y ∗ iff F ∗X(r) ≤ F ∗Y (r) for all r in some interval [r−, r+].

Definition 4 (latent SD2). Latent X∗ second-order stochastically dominates Y ∗ iff for all

u ∈ R,
∫ u
−∞[F ∗X(r)− F ∗Y (r)] dr ≤ 0; this is written X∗ SD2 Y

∗ or F ∗X SD2 F
∗
Y .

Definition 5 (single crossing). CDFs FA(·) and FB(·) have a “single crossing” iff there exists

a “crossing point” m ∈ R such that FA(r) < FB(r) when r < m and FA(r) > FB(r) when

r > m, or vice-versa (switching FA and FB). The first possibility is written FA SC FB or

A SC B; the second (switching FA and FB) is written FB SC FA or B SC A.

Definition 6 (pure location shift). The distribution of X∗ is a pure location shift of the

distribution of Y ∗ (and vice-versa) iff there exists δ ∈ R such that F ∗X(r) = F ∗Y (r− δ) for all

r ∈ R.

Definition 7 (τ2 − τ1 IQR). For a distribution with quantile function Q(·), the τ2 − τ1

interquantile range (IQR) is Q(τ2)−Q(τ1).

The SD1 definitions are technically for “weak” instead of “strong” (replacing ≤ with

<) dominance; Davidson and Duclos (2013, p. 89) note that the distinction is statistically

indistinguishable in practice.

The single crossing property (Definition 5) has also been useful in areas of economic

theory like mechanism design. Here, we presume m is a single point for simplicity, but it

could be replaced by an interval. However, the strict inequalities cannot be replaced by weak

inequalities (as it is sometimes defined) without changing some of our results.

The definition of “restricted SD1” is from Condition I of Atkinson (1987, p. 751) and is

discussed in Davidson and Duclos (2000, 2013). Although not as strong as (unrestricted)

SD1, it is still meaningful, especially if the interval [r−, r+] is large. In our results, r− = γ1

and r+ = γJ−1 are the FX(1)-quantile and FX(J − 1)-quantile of X∗, respectively.
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2.2 Between-group inequality

First-order stochastic dominance (SD1) has long been valued for unambiguously ranking two

distributions. For example, with income, an individual at some percentile of the dominant

distribution has a higher income than the individual at the same percentile of the domi-

nated distribution. Further, for any increasing utility function (of income), expected utility

is higher for the first distribution. (That is, under a Rawlsian veil of ignorance, everybody

would prefer ex ante to be born as a random person in the group/society with the domi-

nant income distribution.) SD1 is similarly valuable for ranking latent health distributions,

assuming it is latent (not ordinal) health that enters the utility function.

We discuss some SD1 intuition before stating formal results. It is clear that latent SD1

implies ordinal SD1 if X and Y have the same thresholds, i.e., ∆γ = 0. That is, ordinal

SD1 is a testable implication of latent SD1. However, unlike in the discrete latent setup

of Allison and Foster (2004), the converse is not true: ordinal SD1 does not imply latent

SD1. With ∆γ = 0, ordinal SD1 only restricts F ∗X(γj) ≤ F ∗Y (γj) for j = 1, . . . , J − 1; latent

SD1 could easily be violated in the lower tail, for example. To infer latent SD1 from ordinal

SD1, we would need to impose enough structure that we could interpolate and extrapolate

from only J − 1 points on each CDF. Even Assumptions A3–A5 do not collectively provide

enough structure to extrapolate, unless σX = σY was also assumed.

Ordinal SD1 can imply latent restricted SD1 (Definition 3) in two cases. The first case is

when one ordinal CDF is far enough below the other that the CDF bounds like in Figure 2

do not overlap. The second case is with a location–scale model (A3). The location–scale

model provides enough structure to interpolate the SD1 relationship between the γj where

we know F ∗X(γj) ≤ F ∗Y (γj), but not enough structure to extrapolate SD1 into the tails.

Without ∆γ = 0, none of these results hold. A threshold shift ∆γ 6= 0 is observationally

equivalent to a location shift of the latent distribution of Y ∗.

The above results are summarized in Theorem 2. Before that, we state Lemma 1, which

helps prove parts of Theorems 2 and 3. Lemma 1 is essentially Proposition 1 from Bond and

Lang (2018). It also implies that A3 is violated if there are multiple ordinal CDF crossings.

Lemma 1. Let Assumptions A1 and A3 hold. Assume F ∗(·) is strictly increasing.1 If

σX 6= σY , then the latent CDFs have a single crossing (Definition 5) with crossing point

m = (σY µX − σXµY )/(σY − σX). If σX = σY , then there is no crossing point (i.e., SD1

holds).

Theorem 2. Let Assumptions A1 and A2 hold.

1This can be relaxed by replacing m in Definition 5 with an interval; the intuition is the same.
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(i) If ∆γ = 0, then X∗ SD1 Y
∗ =⇒ X SD1 Y .

(ii) If ∆γ 6= 0, then X∗ SD1 Y
∗ 6=⇒ X SD1 Y .

(iii) If ∆γ = 0 and Assumption A3 holds with σX = σY , then X∗ SD1 Y
∗ ⇐⇒ X SD1 Y .

(iv) Even if ∆γ = 0 and Assumptions A3–A5 hold, X SD1 Y 6=⇒ X∗ SD1 Y
∗.

(v) If ∆γ = 0, then FX(j + 1) ≤ FY (j) for all j = 1, . . . , J − 2 =⇒ restricted SD1 of X∗

over Y ∗ on the interval [γ1, γJ−1].

(vi) If ∆γ = 0 and A3 holds, then X SD1 Y =⇒ restricted SD1 of X∗ over Y ∗ on

[γ1, γJ−1].

●

●

●

●

γ1 γ2 γ3 γ4

FX(1)
FY(1)

FX(4)

FY(4)

Figure 3: Illustration of Theorem 2(vi).

Figure 3 illustrates some results from Theorem 2. The latent CDFs satisfy the location–

scale assumption, so at most one latent CDF crossing is possible. In Figure 3, the crossing

is below γ1, so there is restricted SD1 on [γ1, γ4] (actually an even larger interval), and there

is ordinal SD1. This helps illustrate the logic behind Theorem 2(vi). Theorem 2(iv) is also

illustrated: even though there is ordinal SD1 and the latent distributions satisfy A3–A5,

there is not latent SD1 since the latent CDFs cross in the lower tail. Some insight into

Theorem 2(i) and Theorem 2(iii) may be gleaned by imagining Figure 3 modified so the

latent CDFs did not cross.
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2.3 Within-group inequality

There are multiple reasons to be interested in dispersion of the latent health distribution.

First, evidence of dispersion increasing with age supports the existence of permanent “health

shocks”; this is one focus of Deaton and Paxson (1998a,b), for example. Second, dispersion

reflects inequality within a (sub)population. Third, dispersion is a component of welfare

given a concave utility function, i.e., it is related to second-order stochastic dominance.

Naturally, latent second-order stochastic dominance is more difficult to infer from ordinal

distributions, requiring ∆γ = 0 (among other assumptions), whereas dispersion results allow

∆γ 6= 0.

In the location–scale model of A3, Lemma 1 says a latent CDF crossing implies unequal

scales (σX 6= σY ). With ∆γ = 0, an ordinal CDF crossing implies a latent CDF crossing

(though not vice-versa). In fact, an ordinal CDF crossing contains information about latent

dispersion even without A3 or ∆γ = 0.

●

●

γ1 γ2

FX(1)

FY(1)

FY(2)

FX(2)

Figure 4: Implication of ordinal CDF crossing for latent IQRs.

Most fundamentally, an ordinal CDF crossing implies certain interquantile ranges (IQRs)

are smaller in one latent distribution. Figure 4 illustrates the following arguments. Heuris-

tically, imagine a crossing between j = 1 and j = 2, so FX(1) < FY (1) and FX(2) > FY (2);

then, F ∗X(γ1) < F ∗Y (γ1 + ∆γ) and F ∗X(γ2) > F ∗Y (γ2 + ∆γ). Note that (γ2 + ∆γ)− (γ1 + ∆γ) =

γ2 − γ1, so it is irrelevant whether or not ∆γ = 0. Then, γ2 − γ1 is the FX(2)− FX(1) IQR

for X∗ but the FY (2) − FY (1) IQR for Y ∗. Since FX(1) < FY (1) and FX(2) > FY (2), the

FX(2) − FX(1) IQR of Y ∗ is larger than the FY (2) − FY (1) IQR of Y ∗, so Y ∗ has a larger

FX(2) − FX(1) IQR than X∗. Similar logic determines other IQRs that must be larger for
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Y ∗, as enumerated in Theorem 3. These results can also be seen in light of Theorem 3(i)

from Stoye (2010), considering the latent CDF bounds implied by the ordinal data: even

the most “compressed” possible F ∗Y (·) consistent with FY (·) still has a larger IQR than the

most “dispersed” possible F ∗X(·).
Further imposing the location–scale model yields stronger results. In the location–scale

model, the location parameter µ has no affect on IQRs, and the scale paramter σ affects all

IQRs simultaneously. Imposing this model allows even a single larger IQR to imply a larger

σ, which in turn implies all IQRs are larger; it provides enough structure to extrapolate from

a set of IQRs to all IQRs. Note that while an ordinal CDF crossing implies a different σ, the

lack of a crossing is ambiguous since the latent CDFs could cross in the tails, undetected by

the ordinal distributions. Also, following from Lemma 1, multiple ordinal crossings imply

that the location–scale model is misspecified.

Yet further imposing symmetry and ∆γ = 0 (fixed thresholds) identifies latent second-

order stochastic dominance (SD2) in some cases. The location–scale model combined with

symmetry simplifies SD2 to conditions on µ and σ. If the median category decreases to

imply µY < µX , and the CDFs cross to imply σY > σX , then X∗ SD2 Y
∗.

The above results are formalized in Theorem 3.

Theorem 3. Let Assumptions A1 and A2 hold. Assume F ∗X(·) and F ∗Y (·) are strictly increas-

ing. Assume there is a single crossing of the ordinal CDFs at category m, i.e., FX(j) < FY (j)

for j ≤ m and FX(j) > FY (j) for j > m. Let Q∗X(·) and Q∗Y (·) denote the quantile functions

of X∗ and Y ∗, respectively.

(i) Q∗X(τ2)−Q∗X(τ1) < Q∗Y (τ2)−Q∗Y (τ1) for any combination of τ2 ∈ T2 and τ1 ∈ T1, where

T1 ≡
m⋃
j=1

[FX(j), FY (j)], T2 ≡
J−1⋃

j=m+1

[FY (j), FX(j)]. (1)

(ii) If Assumption A3 also holds, then σX < σY and Q∗X(τ2)−Q∗X(τ1) < Q∗Y (τ2)−Q∗Y (τ1)

for all 0 < τ1 < τ2 < 1.

(iii) Let ∆γ = 0. Let Assumptions A3 and A4 hold, with F ∗(0) = 1/2. If the median

category of X is strictly above that of Y , then X∗ SD2 Y ∗. If there is the single

crossing but instead X and Y have the same median, then it is ambiguous whether

X∗ SD2 Y
∗ or not.

Theorem 3 allows interpretation of the median-preserving spread (MPS) when the latent

distributions are continuous, instead of discrete like in Allison and Foster (2004). Assuming

the ordinal median is an interior category (not j = 1 or j = J), as seems implicit in Allison
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and Foster (2004), the MPS is a special case of a single crossing of ordinal CDFs. Theorem 3

says this is indeed evidence of different dispersion. However, Theorem 3(iii) says that MPS

is not evidence of latent SD2, but that a median-decreasing spread can be (under certain

assumptions). With a continuous latent distribution, there is too much ambiguity with equal

ordinal medians; either latent median could be larger.

If the CDFs do not cross as in Theorem 3, then dispersion differences can be identified

by a shape restriction: unimodal, symmetric latent distributions. Symmetry implies the

mode is at the median, which we can approximately locate from the ordinal distribution.

Unimodality implies the latent CDFs are concave after the median. Thus, if we observe a

“fanning out” of CDFs above the median, then there is a certain interquantile range (IQR)

that must be larger for the lower CDF.

Theorem 4. Let Assumptions A1, A2, A4, and A5 hold.

(i) Let j denote any category for which FX(j) ≥ FY (j) ≥ 1/2 and FX(j + 1) ≥ FY (j + 1).

If FY (j+1)−FY (j) < FX(j+1)−FX(j), then the IQR between the FY (j+1)-quantile

and FX(j)-quantile of the Y ∗ distribution is larger than that of the X∗ distribution.

This holds whether FX(j) > FY (j + 1) or FX(j) < FY (j + 1).

(ii) Let j+1 denote any category for which FX(j+1) ≤ FY (j+1) ≤ 1/2 and FX(j) ≤ FY (j).

If FY (j + 1) − FY (j) < FX(j + 1) − FX(j), then the IQR between the FY (j)-quantile

and FX(j+1)-quantile of the Y ∗ distribution is larger than that of the X∗ distribution.

This holds whether FX(j + 1) > FY (j) or FX(j + 1) < FY (j).

(iii) If additionally Assumption A3 holds, with F ∗(0) = 1/2, then the conclusions of Theo-

rem 4(i) and Theorem 4(ii) strengthen to σY > σX , implying the τ2 − τ1 IQR of Y ∗ is

larger than that of X∗, for all 0 < τ1 < τ2 < 1.

3 Statistical inference on ordinal relationships

This section concerns statistical inference on the ordinal relationships in Section 2.2 We

describe how to statistically assess our (un)certainty of a certain relationship between two

ordinal population distributions, given a sample of data from each. We characterize the rela-

tionships (hypotheses) of interest and then discuss both frequentist and Bayesian procedures,

which are then compared.

2Initial work on this section is found in Chapter 2 of the second author’s dissertation (Zhuo, 2017).
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3.1 Relationships of interest

Ordinal CDF and PMF values may be expressed as moments. For example, FX(j) =

E(1{X ≤ j}) and pXj = E(1{X = j}). Consequently, all ordinal relationships from Sec-

tion 2 can be written in terms of moment inequalities, with unions and/or intersections

taken in some cases. These are now characterized. Since FX(J) = FY (J) = 1 always, only

j = 1, . . . , J − 1 are used.

The relationship X SD1 Y is a set of moment inequalities:

X SD1 Y ⇐⇒
J−1⋂
j=1

{FX(j) ≤ FY (j)}. (2)

If the medians of X and Y are known, then Y MPS X (i.e., Y is a median-preserving

spread of X) is also a set of moment inequalities. With m the shared median category,

Y MPS X ⇐⇒
J−1⋂
j=1

{
[21{j < m} − 1][FX(j)− FY (j)] ≤ 0

}
. (3)

Treating the median is known could be reasonable in large samples where, e.g., FX(3) =

FY (3) = 0.3, FX(4) = FY (4) = 0.7, and FX(j) is close to FY (j) for other j, so clearly m = 4

but MPS is not certain. If instead the medians are unknown, then MPS is a union of events

over possible median values, checking (3) for each possible median:

Y MPS X ⇐⇒
J−1⋃
m=2

{
{FX(m− 1) < 1/2 ≤ FX(m)} ∩ {FY (m− 1) < 1/2 ≤ FY (m)}

∩
J−1⋂
j=1

{
[21{j < m} − 1][FX(j)− FY (j)] ≤ 0

}}
.

(4)

Note that MPS with m = 1 or m = J is equivalent to SD1, so only m = 2, . . . , J − 1 are

included in (4).

A single crossing is similar to (4), except that the crossing point need not be the median,

and the crossing point k must be between 2 and J − 1. Using the definition and notation in

Definition 5,

X SC Y ⇐⇒
J−1⋃
k=2

J−1⋂
j=1

{[21{j < k} − 1][FX(j)− FY (j)] < 0}. (5)

In practice, we cannot distinguish statistically between < and ≤.

A median-decreasing spread (MDS), i.e., the combination of a single crossing and strictly
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smaller median, is

Y MDS X ⇐⇒

{
J−1⋃
k=2

J−1⋂
j=1

{[21{j < k} − 1][FX(j)− FY (j)] < 0}

}

∩

{
J−1⋃
m=1

{FX(m) < 1/2 ≤ FY (m)}

}
.

(6)

The existence of multiple crossings is the lack of SD1 (i.e., zero crossings) or a single

crossing:

multiple crossings ⇐⇒ not {X SD1 Y or Y SD1 X or X SC Y or Y SC X}. (7)

Technically, the SC in (7) should be slightly weaker than in (5), allowing for weak inequalities

(≤ 0), but the difference is again statistically indistinguishable in practice. The expression

in (7) is the complement of a union of (a union of) an intersection of moment inequalities.

There are alternative, equivalent characterizations, but they are no less complicated in form.

The presence of at least one “fanning out” of ordinal CDFs suggesting that Y has larger

dispersion than X can be written as

Y FanOut X ⇐⇒
J−1⋃
j=2

{Aj ∪Bj}, (8)

Aj ≡ {FX(j − 1) < FY (j − 1)} ∩ {FX(j) ≤ 1/2} ∩ {FY (j) ≤ 1/2}

∩ {FY (j)− FY (j − 1) < FX(j)− FX(j − 1)},

Bj ≡ {FX(j) > FY (j)} ∩ {FX(j − 1) ≥ 1/2} ∩ {FY (j − 1) ≥ 1/2}

∩ {FY (j)− FY (j − 1) < FX(j)− FX(j − 1)}.

The above characterization includes CDF crossing as a special case of fanning out.

3.2 Bayesian inference

With iid sampling, we show how to use the Dirichlet–multinomial model for Bayesian infer-

ence on all the ordinal relationships. We then discuss a possible adjustment to the prior.

More generally, posterior probabilities of all relationships are easily computed from any pos-

terior over the ordinal category probabilities, given the characterizations in Section 3.1. For

example, one of our empirical examples has a complex sampling design. Code is provided

on the first author’s website.

We consider iid sampling of two independent samples from two respective ordinal popu-

lation distributions. No latent structure is imposed. Letting nX and nY denote sample sizes,
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and continuing notation from earlier,

Xi
iid∼ FX , i = 1, . . . , nX , Yi

iid∼ FY , i = 1, . . . , nY . (9)

Alternatively, sampling may be considered in terms of the category probabilities and

observed counts. Let

pX ≡ (pX1 , . . . , p
X
J ), pY ≡ (pY1 , . . . , p

Y
J ),

pXj ≡ P(X = j), pYj ≡ P(Y = j).

That is, the vectors pX and pY fully determine the probability mass functions (PMFs) of X

and Y , respectively. The data samples can be summarized by counts of observations in each

category, which follow a multinomial distribution:

NX ≡ (NX
1 , . . . , N

X
J ), NY ≡ (NY

1 , . . . , N
Y
J ),

NX
j ≡

nX∑
i=1

1{Xi = j}, NY
j ≡

nY∑
i=1

1{Yi = j},

NX ∼ Multinomial(nX ,p
X), NY ∼ Multinomial(nY ,p

Y ).

We first consider the posteriors for the two ordinal distributions themselves. Here, the

multinomial sampling distribution of category counts is convenient. The Dirichlet distribu-

tion is the conjugate prior for the multinomial, i.e., a Dirichlet prior results in a Dirichlet

posterior. Informative and uninformative priors are both easy to use. We use the uniform

(i.e., constant PDF) priors

pX ∼ Dir(1), pY ∼ Dir(1), (10)

where 1 ≡ (1, 1, . . . , 1) is a vector of J ones. If J = 2, then the priors simplify to pX1 ∼
Unif(0, 1) and pY1 ∼ Unif(0, 1), with pX2 = 1− pX1 and pY2 = 1− pY1 . More generally, pX and

pY are distributed uniformly over the unit simplex in RJ , i.e., vectors whose J non-negative

components sum to one.

By conjugacy, the posteriors are

pX | NX ∼ Dir(1 + NX), pY | NY ∼ Dir(1 + NY ), (11)

which are easy to sample from (without MCMC).

To compute the posterior probability of a particular ordinal relationship, one may take

many draws from the Dirichlet posteriors in (11) and check whether or not the relationship
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holds in each draw. For example, given a draw of pX and pY ,

X SD1 Y ⇐⇒ ∀k = 1, . . . , J − 1,
k∑
j=1

pXj ≤
k∑
j=1

pYj .

The proportion of total draws in which X SD1 Y is the (approximate) posterior probability

of X SD1 Y .

In some cases, a different type of “objective” prior may be desired. In (10), the prior

is objective in the sense that it is uniform over all possible PMFs, which arguably reflects

no prior information. However, if there is reason to suspect a certain relationship, then it

may be desired to set the prior of the relationship to 1/2: P(H0) = 1/2, where H0 is the

relationship, like H0 : X SD1 Y .

To achieve this, the prior from (10) may be adjusted using an idea from Goutis, Casella,

and Wells (1996). In their equation (7), they first compute γ = Porig(H0), the original

prior probability that H0 is true. In their (8), they show the adjusted prior, computed

by multiplying the original prior by the constant γ/(1 − γ) wherever H0 is false, and then

renormalizing (so that it integrates to one); this achieves 1/2 probability of H0 under the

adjusted prior, Padj(H0) = 1/2. In their (9), they show that the corresponding adjusted

posterior may be computed from the unadjusted posterior as

Padj(H0 | data) =
Porig(H0 | data)

Porig(H0 | data) + γ
1−γ [1− Porig(H0 | data)]

. (12)

That is, we may compute the posterior probability using (11) and then adjust it using (12),

once we know γ.

The value of γ can be pre-computed. Since γ depends only on the type of relationship

(H0) and the number of categories (J), we have simulated these for J = 2, . . . , 30 categories

and all relationships discussed earlier, using 10,000 draws each, and stored these values in our

code. (If J > 30, additional values may be simulated in under a minute.) The computation

of relationship probabilities is identical to before, except that draws are taken from the prior

in (10) instead of the posterior in (11).

In sum, when an objective prior is desired, posterior probabilities of the ordinal distri-

bution relationships in Section 2 may be computed as follows. These steps are implemented

in our code.

1. Given the observed vectors of category counts, take R draws of pX and pY from the

Dirichlet distribution posteriors in (11).

2. In each of the R draws, check whether each relationship holds, using the characteriza-
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tions in Section 3.1.

3. For each relationship, compute the proportion of the R draws in which that relationship

held; this is the (approximate) posterior probability of that relationship.

4. If it is desired that the prior probability of a relationship is 1/2, then adjust the

posterior using (12). The value of γ is computed by the above steps: it is the posterior

probability of the relationship when NX = NY = 0.

Usually, the posterior probabilities of different relationships are themselves the most

informative summary of the data, but sometimes a more concrete decision must be made.

In such a case, first a loss function must be determined, quantifying how “bad” a decision

is given a true state of the world. Then, the Bayes decision rule chooses the decision that

minimizes posterior expected loss.

One loss function for hypothesis testing takes value 1− α for type I error, α for type II

error, and zero otherwise. This is often called “generalized 0–1 loss” (e.g., Casella and Berger,

2002, eqn. (8.3.11)). This loss function is arguably implicit in frequentist hypothesis testing;

e.g., Kaplan and Zhuo (2018, §2.1) describe connections like how an unbiased frequentist

test with size α is the minimax risk decision rule under this loss function.

This generalized 0–1 loss function leads to a Bayesian hypothesis test that “rejects” a null

hypothesis if and only if its posterior probability is below α. See Kaplan and Zhuo (2018,

§2.1) for details. For example, if the posterior probability of X SD1 Y is 0.03 and α = 0.05,

then H0 : X SD1 Y is rejected. Computationally, this treats the posterior for a given H0 like

a p-value, but it does not imply that the posterior actually is a valid p-value; see Section 3.4.

3.3 Frequentist hypothesis testing

Frequentist hypothesis tests of first-order (and higher-order) stochastic dominance have been

discussed more often for continuous random variables, as in Davidson and Duclos (2000) and

Barrett and Donald (2003), for example. However, this is primarily because the discrete (or

ordinal) case is much simpler, so there is less to be said.

In the frequentist framework, there is an important difference between testing a null

hypothesis of dominance and testing a null of non-dominance. In particular, rejection of non-

dominance is much stronger evidence of dominance than non-rejection of dominance. This

distinction, which applies equally to continuous and discrete/ordinal variables, is discussed

at length in Davidson and Duclos (2013). Earlier, Kaur, Prakasa Rao, and Singh (1994) also

considered testing a null of non-SD2.
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The following subsections concern testing different types of ordinal hypotheses, given the

iid sampling setup from Section 3.2.

3.3.1 Null hypothesis: MPS (known medians) or SD1

Let

θ ≡ (θ1, . . . , θJ−1), θj ≡ FX(j)− FY (j) = E[1{X ≤ j}]− E[1{Y ≤ j}]. (13)

The null hypothesis H0 : X SD1 Y is equivalent to

H0 : θ ≤ 0, (14)

i.e., θj ≤ 0 for all j = 1, . . . , J − 1. If m is the known median of both X and Y , then the

null hypothesis H0 : Y MPS X is equivalent to

H0 : Dθ ≤ 0, (15)

where D is a diagonal matrix with elements Djj = 1 for j = 1, . . . ,m− 1 and Djj = −1 for

j = m, . . . , J − 1.

The easiest way to test (14) or (15) is with a Bonferroni correction, but it will be conser-

vative (i.e., size strictly below α). Using the Bonferroni approach, each individual hypothesis

H0j : θj ≤ 0 or H0j : Djjθj ≤ 0 is tested at an α/(J − 1) significance level, where J − 1 is

the number of individual hypotheses. Then, the overall H0 is rejected if any H0j is rejected.

This overall test’s size is bounded above by α: the probability of a union of events (i.e., the

H0j rejection events) is bounded above by the sum of the event probabilities, which here

is
∑J−1

j=1 α/(J − 1) = α. The Bonferroni correction is related to the union–intersection test

approach (e.g., Casella and Berger, 2002, §8.2.3,8.3.3). The tests for individual H0j could be

one-sided t-tests using the asymptotic distribution in (17) below, for example.

More sophisticated testing of null hypotheses like (14) and (15) has been considered in

papers going back to Kodde and Palm (1986) and Perlman (1969). It is also the topic of

many recent econometrics papers. For example, see Andrews and Barwick (2012), Romano,

Shaikh, and Wolf (2014), McCloskey (2015), and references therein. Many of these papers

try to improve power (while maintaining asymptotic size control) by determining which

inequalities are “far” from binding and only testing the remainder, a procedure termed

“moment selection” in the context of moment inequality testing. For example, if θ1 is

estimated to be very negative (e.g., 10 standard errors below zero), then we could test only

j = 2, . . . , J − 1, which can be done with a smaller critical value and thus higher power;

e.g., the Bonferroni correction would allow individual tests with level α/(J − 2) instead of

α/(J − 1). Our case is simpler than moment inequality testing generally since our moment
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functions like 1{X ≤ j} − 1{Y ≤ j} do not involve unknown parameters.

Implementation of any test above requires the sampling distribution of θ̂, which is pro-

vided below in (17) for convenience. It is asymptotically multivariate normal, as seen

in the following. Since
∑nX

i=1 1{Xi ≤ j} ∼ Binomial(nx, FX(j)), the CDF estimators

F̂X(j) = n−1X
∑nX

i=1 1{Xi ≤ j} are scaled (by n−1X ) binomial random variables, with mean

FX(j) and variance FX(j)[1 − FX(j)]/nX . In large samples, the central limit theorem pro-

vides the normal approximation

√
nX
[
(F̂X(1), . . . , F̂X(J − 1))− (FX(1), . . . , FX(J − 1))

] d−→ N(0,ΣX),

ΣX,jk ≡ FX(j)[1− FX(k)] for j ≤ k, ΣX,kj = ΣX,jk,
(16)

and similarly for F̂Y (·). Without iid sampling, a different central limit theorem may still

hold, albeit with different ΣX and ΣY .

Since the samples for X and Y are assumed independent, the sampling distributions

of the corresponding CDF estimators are independent, so their covariance is zero. Thus,

assuming nX/nY → δ ∈ (0,∞),

√
nX(θ̂ − θ)

d−→ N(0,Σθ), Σθ ≡ ΣX + δΣY . (17)

For MPS testing, by the continuous mapping theorem,

√
nX(Dθ̂ −Dθ) = D

√
nX(θ̂ − θ)

d−→ DN(0,Σθ) = N(0,DΣθD
′). (18)

3.3.2 Null hypothesis: non-MPS (known medians) or non-SD1

The null hypothesis of non-SD1 (of X over Y ) is

H0 : θj > 0 for some j = 1, . . . , J − 1, (19)

with θj from (13). That is, (19) is true iff (14) is false. This can be written as a union:

H0 : θ ∈ Θ0, Θ0 ≡
J−1⋃
j=1

{θ : θj > 0}. (20)

Thus, an intersection–union test may be used. Similarly, non-MPS (of Y versus X) can be

tested by replacing θj with Djjθj.

The intersection–union test of (20) rejects when H0j : θj > 0 is rejected for all j. That

is, the overall rejection region is the intersection of the rejection regions for individual tests
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of H0j. If each H0j test has size α, then the overall test has size α:

sup
θ:H0 true

P(reject H0 | θ) = sup
j∈{1,...,J−1}

sup
θ:H0j true

P(reject H0 | θ)

= sup
j∈{1,...,J−1}

sup
θ:H0j true

P(reject all H01, . . . , H0J−1 | θ)

≤ sup
j∈{1,...,J−1}

=size of H0j test≤α︷ ︸︸ ︷
sup

θ:H0j true
P(reject H0j | θ)

≤ sup
j∈{1,...,J−1}

α

= α.

For more, see Theorem 8.3.23 and Sections 8.2.3 and 8.3.3 in Casella and Berger (2002), who

also remark, “The IUT may be very conservative” (p. 306).

3.3.3 Null hypothesis: MPS (unknown medians) or single-crossing

To characterize the single-crossing null hypothesis H0 : X SC Y , we follow the structure of

(5). With θj ≡ FX(j)− FY (j) as in (13),

H0 : θ ∈ Θ0, Θ0 ≡
J−1⋃
c=2

Θc, Θc ≡
{
θ : (21{j < c} − 1)θj ≤ 0, j = 1, . . . , J − 1

}
. (21)

To test the H0 in (21), we may combine the intersection–union approach of Section 3.3.2

with a method from Section 3.3.1. Each H0c has the same structure as the null of MPS

with known medians m = c, so any test from Section 3.3.1 may be used. That is, to test

H0 : X SC Y at level α, there are two steps.

1. For c = 2, . . . , J − 1, using the definition in (21), test H0c : θ ∈ Θc at level α using a

method from Section 3.3.1.

2. Reject H0 : X SC Y if and only if all H0c are rejected.

MPS with unknown medians is essentially a stricter version of single-crossing. MPS

adds the condition that the crossing point is equal to the medians of both distributions.

Consequently, tests of sets of inequalities cannot be used, but the simple (albeit conservative)

Bonferroni adjustment could still be used, adding the median equality hypotheses to the

inequality hypotheses to be tested jointly. However, given the results in Section 2.3, it may

make more sense to just test for single-crossing anyway.
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3.3.4 Other null hypotheses

The other null hypotheses characterized in Section 3.1 are also combinations of unions and

intersections of inequalities. In principle, these may be tested by combining the approaches

of Sections 3.3.1 and 3.3.2.

It may be tempting to simplify the null hypotheses in Section 3.1 to make testing easier,

but this may generate multiple testing problems. For example, with the “fanning out”

hypothesis, since there are so many possible ways in which we could observe the phenomenon,

it may be tempting to just find the largest empirical fanning out and only test that one.

However, this is not a valid procedure. It is akin to running a regression with lots of

regressors, taking (only) the one with the largest t-statistic, and concluding it is statistically

significant at a 5% level if |t| > 1.96. This ignores the multiple testing problem: even if

no regressor is significant, or in our case if no pairs of population CDF increments show a

fanning out, there may be a high probability that at least one of them looks statistically

significant in the sample. Testing only the biggest empirical fanning out would thus not

control size at the desired level.

3.4 Bayesian and frequentist differences

Among the usual advantages and disadvantages of Bayesian and frequentist inference (e.g.,

coherence vs. calibration), some are particularly important for ordinal distribution relation-

ships. Their relative importance may also depend on the empirical application.

The Bayesian approach seems particularly advantageous in this setting. First, it is easy

to compute. Unlike in settings requiring MCMC, the posterior in (11) can be sampled from

directly, and all relationships can be assessed simultaneously. In contrast, each null hy-

pothesis requires a separate method for frequentist testing. Second, posterior probabilities

are easy and intuitive to interpret. They reflect our beliefs about different possible rela-

tionships given the data, which is often how p-values are (incorrectly) interpreted. Third,

the posterior probabilities of different possible ordinal relationships are coherent. That is,

they obey the usual probability laws; e.g., the three posterior probabilities of X SD1 Y ,

Y SD1 X, and neither having SD1 sum to 100%. Coherence is more important than usual

in this setting where a variety of relationships are considered simultaneously. Fourth, in

cases when decisions must be made (not just reporting of posterior probabilities), it is easy

to use more appropriate loss functions when computing the Bayes decision rule, and the

choice of loss function is transparent and explicit. Fifth, assuming a finite loss function, any

Bayes decision rule is admissible. That is, there is no other decision rule that has weakly

better (frequentist) risk for every possible FX(·) and FY (·) (and strictly better for at least
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some values). Admissibility is a frequentist property but is not attained by every frequentist

hypothesis test.

The Bayesian approach is most often criticized for parametric likelihoods, subjective

priors, and slow computation. However, here we do not have a latent parametric model, but

rather a nonparametric model of the category probabilities. Subjective priors may be used if

helpful, but we focus on using objective priors in Section 3.2. Computation, as noted above,

is actually a Bayesian advantage in this setting.

The one remaining criticism is that the Bayesian hypothesis test from Section 3.2 may

not control size at a chosen level α (if that is desired), even asymptotically. It is possible

that using a different prior or a different loss function (when deciding whether to reject a

hypothesis or not) may solve this problem. These remain interesting open questions. For

now, we explain why the most obvious Bayesian hypothesis test suffers size distortion, i.e.,

why the posterior may not be interpreted as a p-value.

The frequentist size of Bayesian hypothesis tests of sets of inequality constraints (like in

Section 3.1) has been studied by Kaplan and Zhuo (2018). They consider the Bayesian test

that rejects some H0 when the posterior probability of H0 is below α, essentially treating

the posterior like a p-value. This particular test has both practical and decision-theoretic

motivation; see Section 3.2 and Kaplan and Zhuo (2018, §2.1). They consider a single-

draw Gaussian experiment in which the sampling and posterior distributions are equivalent

(motivated by the Bernstein–von Mises theorem). Their main results are: a) if the null

hypothesis is that the (local) parameter belongs to a half-space of the unrestricted parameter

space, then the Bayesian test’s size equals the nominal α; b) if instead H0 is a subset of a

half-space, then the Bayesian test’s size exceeds α; c) if instead H0 cannot be contained in

any half-space, then the Bayesian test’s size may be above, below, or equal to α, possibly

depending on the sampling/posterior distribution. For example, if H0 : FX(3) ≤ 1/2, then

result (a) applies: asymptotically, the Bayesian test has size α. More relevant to inequality

relationships, if H0 : X SD1 Y (or MPS with known median), then result (b) applies: size

is above α. If H0 is that X does not SD1 Y , then (c) applies: it may be possible that the

Bayesian test’s size is below α, but more information is needed. Result (a) comes partly

from the shape of H0 but also from the prior probability of H0 being small.

However, the results of Kaplan and Zhuo (2018) do not apply to our Bayesian method

with the prior probability of H0 adjusted to be 1/2. Lacking general theoretical results, we

provide simulation evidence in Section 5. In particular, the adjustment does not yield size

control when the null is SD1 or SC.

In sum: if size control is supremely important, then frequentist tests may be preferred;

otherwise, the Bayesian approach has advantages in both interpretation and computation.
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4 Extension to conditional distributions

We briefly discuss extension of identification and inference to conditional distributions (“re-

gression”). The previous sections’ results essentially compare conditional distributions when

the conditioning variable is binary. Instead of comparing Y ∗ with another population X∗,

we can equivalently compare the conditional distributions Y ∗ | Z = 0 and Y ∗ | Z = 1.

Assuming a sampling process that allows consistent estimation of the conditional ordinal

distributions Y | Z = 0 and Y | Z = 1 (e.g., iid), the identification results apply directly.

More generally, there can be a conditioning vector Z with discrete, continuous, and/or

even categorical elements. Pairwise inequality comparisons of latent conditional distributions

Y ∗ | Z = z1 and Y ∗ | Z = z2 can be done for any values z1 and z2 given knowledge

of the corresponding conditional ordinal distributions, Y | Z = z1 and Y | Z = z2. For

statistical inference, like before, we can examine the conditional ordinal distributions directly,

interpreting the results in light of the identification results.

Often the conditional ordinal distributions can be consistently estimated nonparametri-

cally, even with continuous elements in conditioning vector Z, even without iid sampling.

For example, kernel regression of 1{Y ≤ j} on Z (for all j = 1, . . . , J − 1) can do this, or

other nonparametric distribution regression methods; e.g., see Frölich (2006). Given asymp-

totic normality, the frequentist tests from Section 3 can be applied. Given any posterior

over any two conditional ordinal distributions, posterior probabilities of the different ordinal

relationships of interest can be calculated.

With continuous Z, given the infinite number of possible pairwise comparisons (z1, z2),

thoughtful summaries are required. One possibility is to use a benchmark z0. Then, for a

given relationship, the set of z where the relationship holds is identified and can be estimated.

For example, we could estimate the set of z such that the ordinal distribution of Y | Z = z

has a single crossing of the benchmark distribution of Y | Z = z0: {z : F̂Y |Z(· | Z = z) SC

F̂Y |Z(· | Z = z0)}. Formulating other economically relevant summaries is left to future work,

and should be guided by specific empirical examples.

5 Simulations

Our simulations investigate two questions about statistical inference on the ordinal rela-

tionships of interest. First, do the newer frequentist hypothesis tests (like those cited in

Section 3.3.1) provide much improvement? Second, can the Bayesian posterior probabilities

be treated as p-values? With the uninformative prior (over category probabilities), the an-

swer should be “no” based on the theoretical results in Kaplan and Zhuo (2018), but they
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do not consider the adjusted prior that assigns 1/2 prior probability to the null hypothesis.

The null hypotheses are SD1 and SC, with DGPs as follows. In DGP 1, the ordinal

distributions of X and Y are identical, with 1/5 probability on each of five categories. This

is on the boundary of SD1 and SC, and all inequalities FX(j) ≤ FY (j) for j = 1, 2, 3, 4 are

binding for SD1. (Recall FX(5) = FY (5) = 1 regardless.) DGP 2 is also on the boundary

of both SD1 and SC, but only one inequality is binding for SD1: Y is the same, but X has

only 1/10 probability on each of the first three categories, with 1/2 probability on the fourth

category, so FX(j) < FY (j) for j = 1, 2, 3 but FX(4) = FY (4) = 4/5.

The following methods are compared. First, for both SD1 and SC, posterior probabilities

are computed from the Dirichlet–multinomial model, with both the unadjusted and adjusted

priors from Section 3.2. The corresponding test rejects when the posterior is below α, as in

Section 3.4. Second, also for both SD1 and SC, the recommended procedure from Section 2

of Andrews and Barwick (2012) is used, denoted RMS (“refined moment selection”). For SC,

RMS is used as in Section 3.3.3. The basic idea of RMS (and related procedures) is to try to

remove inequalities that are clearly slack in order to improve power, with some adjustment

terms to ensure uniform size control. Third, for SD1, the Kolmogorov–Smirnov (KS) test

is naively applied. The KS test is known to be conservative for discrete distributions, even

under the least favorable configuration (DGP 1), but it is widely available and commonly

used. It also lacks the power-improving “moment selection” of RMS. Other method and

simulation parameters are given in Table 1.

Table 1: Simulated type I error rate, nominal α = 0.10.

H0 : X SD1 Y H0 : X SC Y

DGP n KS RMS Bayes Bayes (adj) RMS Bayes Bayes (adj)

1 50 0.038 0.089 0.436 0.204 0.032 0.439 0.175
1 100 0.022 0.084 0.430 0.205 0.029 0.359 0.142
1 500 0.027 0.092 0.447 0.199 0.034 0.428 0.171
1 1000 0.032 0.079 0.454 0.228 0.032 0.408 0.155

2 50 0.004 0.057 0.127 0.032 0.031 0.125 0.034
2 100 0.002 0.068 0.105 0.031 0.085 0.133 0.041
2 500 0.006 0.087 0.098 0.029 0.095 0.114 0.032
2 1000 0.003 0.074 0.084 0.025 0.060 0.084 0.018

Notes: sample sizes nX = nY = n, 1000 simulation replications, 1000 posterior
draws, 200 RMS bootstrap draws.

Table 1 shows the answer to our first question is yes, the recent RMS testing procedure

improves considerably over KS. For DGP 1 and especially DGP 2, KS has type I error rate
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well below α. Although this is not itself problematic, it implies (by continuity) that power

is low for deviations from these DGPs; recall that both are on the boundary of H0, so even

infinitessimal deviations can violate H0. In contrast, RMS has type I error rate near α for

DGP 1, for all sample sizes. Though somewhat lower, its type I error rate is also much closer

to α for DGP 2. The combined intersection–union RMS test for SC also appears reasonable,

although as expected it is more conservative than the SD1 test. Overall, RMS appears to

control size without being overly conservative like KS.

Table 1 shows the answer to our second question is no, the posteriors cannot be treated

as p-values, even with the prior adjusted to have 1/2 probability on H0. For DGP 1, for SD1,

the type I error rate for Bayes (adj) stays around 0.20 as n increases, and it stays around

0.15 for SC. These are both clearly above the nominal α = 0.10. For DGP 2, the adjusted

prior instead leads to rejection rates well below α because the unadjusted Bayes test already

has type I error rates very close to the nominal level. This is due to DGP 2 having only a

single binding inequality, which (in large enough samples) reduces the problem to essentially

a single inequality test, for which the unadjusted posterior behaves like a p-value; see Kaplan

and Zhuo (2018) for further discussion.

In principle, a different prior adjustment could lead to a posterior that behaves like a

p-value. For SD1, the prior could be adjusted so that the type I error rate is α for the

least favorable configuration, to ensure size control. However, a different adjustment may

be required for different α, in which case no single adjustment would lead to the posterior

behaving like a p-value. Additionally, the interpretation of the adjustment may seem arbi-

trary, as opposed to the uninformative (unadjusted) prior or the prior with 1/2 probability

on H0 as advocated in (parts of) the literature. Still, it may be practically valuable and

theoretically insightful for future work to determine the prior adjustment leading to size

control for different hypotheses.

6 Empirical illustrations

Section 6.1 examines selection into a wellness incentive program, comparing sample distri-

butions and hypothesis tests. Section 6.2 uses PSID data to compute posteriors for different

relationships between U.S. states’ health distributions.

6.1 Selection into wellness incentive programs

Jones, Molitor, and Reif (2018) implement and study a wellness incentive program for em-

ployees of the University of Illinois. They produce many results on both treatment effects
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and selection effects, for a variety of variables and incentive structures.

We focus on selection into participation based on initial health. Within the “treatment

group” of employees allowed to participate in the program, actual participation was volun-

tary. There were three opportunities to participate: the initial screening, fall activity, and

spring activity. Comparing participant and non-participant baseline characteristics shows

which types the incentive program is likely to attract.

Jones et al. (2018) find that participants are generally “better” or “less dispersed” than

non-participants. These patterns generally hold across different participation opportunities

and variables. Examples of “better” are lower average medical spending and more healthy

behaviors like gym use; see page 3 and Tables A.1b and A.1d. Examples of “less dispersed”

are baseline medical spending and salary; see page 3 and Figures 4 and 5.

Our dataset comes from the paper’s authors. Of 3300 total individuals eligible to par-

ticipate, 1848 did the screening, 903 did the fall activity, and 740 did the spring activity.

Baseline self-reported health status (SRHS) has the usual five-category scale from poor to

excellent.

There is no evidence of selection into the initial screening based on health. The null hy-

pothesis that the two SRHS distributions (i.e., participant and non-participant) are identical

cannot be rejected; the p-value for the Pearson’s chi-squared test is 0.48. Further, the sample

SRHS CDFs cross multiple times, suggesting neither distribution is better or less dispersed.
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Figure 5: Empirical CDFs of baseline SRHS for participants (circle/red) and non-participants
(square/black), for fall (left) and spring (right) activity.

There is mildly suggestive evidence of selection into the fall activity. This is seen in Fig-

ure 5. The null of equality again cannot be rejected (p = 0.19). However, participants’ sample

SRHS distribution first-order stochastically dominates (SD1) that of non-participants.

The strongest evidence of selection on health is into the spring activity. This is again

seen in Figure 5. Equality of the two SRHS distributions is rejected at a 5% level (p =

0.014). Even accounting for multiple testing of three pairs of distributions (screening, fall,
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spring), this test still rejects at a 5% familywise error rate level since 0.014 is below the

Bonferroni-adjusted 0.05/3 = 0.017. As with the fall activity, the sample SRHS distribution

of participants dominates (SD1) that of non-participants. Sample SD1 implies the null

hypothesis of SD1 is not rejected at any common level.

The spring activity has further evidence for ordinal SD1. Let FP (·) denote the SRHS

(ordinal) CDF for the participants, and let FN(·) denote the SRHS CDF for non-participants.

Let j = 1 denote the “poor” category, up to j = 5 for “excellent.” Since FP (5) = FN(5) =

1, only j = 1, 2, 3, 4 are relevant. Full SD1 of participant over non-participant SRHS is

characterized by FP (j) ≤ FN(j) for j = 1, 2, 3, 4. Rejecting FP (j) ≥ FN(j) in favor of

FP (j) < FN(j) thus provides partial evidence of SD1. Indeed, this happens for some of the

categories: the one-sided t-test p-values are 0.058, 0.28, 0.0018, and 0.011, for j = 1, 2, 3, 4,

respectively. Further, for j = 1, 2, 3, define null and alternative hypotheses

Hj
0 : {FP (j) ≥ FN(j) or FP (j + 1) ≥ FN(j + 1)},

Hj
a : {FP (j) < FN(j) and FP (j + 1) < FN(j + 1)}.

(22)

Full ordinal SD1 is equivalent to all Hj
a being true. Rejecting any Hj

0 thus provides partial

evidence toward SD1, without being fully conclusive, i.e., it is evidence of restricted SD1.

Each individual Hj
0 can be tested with an intersection–union test (IUT), as discussed earlier

for testing (19). For example, to test H3
0 , p-values for one-sided t-tests of FP (3) ≥ FN(3)

and of FP (4) ≥ FN(4) are separately computed; the IUT rejects at level α if both p-values

are below α. Here, the p-values are 0.0018 and 0.011, so the IUT rejects H3
0 at a 0.011 (or

higher) level. However, neither H2
0 nor H1

0 is rejected since the p-value for the j = 2 t-test

is 0.28. Using a Bonferroni correction (which is conservative) to account for testing three

Hj
0 simultaneously, controlling familywise error rate at level α = 0.05 requires each Hj

0 to be

tested at level α/3 = 0.017. Even then, H3
0 is still rejected since 0.011 < 0.017. Altogether,

the sample SD1, non-rejection of SD1, and rejection of restricted non-SD1 form strongly

suggestive evidence, though not definitive.

If there is ordinal SRHS SD1, then Theorem 2 offers different latent interpretations. For

example, with a latent location–scale model, Theorem 2(vi) says ordinal SD1 implies latent

restricted SD1. Although weaker than full SD1, this still provides evidence of selection,

suggesting generally healthier individuals tend to select into participation. This comports

with evidence from Jones et al. (2018).

28



6.2 Comparisons between U.S. states

Our new methodology is applied to the 2011 Panel Study of Income Dynamics (PSID).3

Specifically, we consider Bayesian posterior probabilities of different relationships between

health distributions (of heads of household) in different U.S. states. Due to the complex

sampling design of the PSID (stratification, clustering, weights), we use the nonparametric

methodology from Dong, Elliott, and Raghunathan (2014), as implemented in IVEware.4

After taking 400 draws from the posterior, we compute the proportions of draws in which

SD1, SC, and fanning out hold in each direction; see Definitions 2 and 5 and Theorem 4. The

possible interpretations of these ordinal relationships in terms of the latent distributions are

given in Section 2. Roughly speaking, X SD1 Y provides some evidence that X corresponds

to a healthier latent distribution than Y , while X SC Y provides some evidence that X cor-

responds to a less-dispersed latent distribution, as does “Y fans out.” Other implementation

details may be seen in our provided code.

Table 2: Empirical results from PSID 2011.

Posterior probability (%)

X Y X SD1 Y Y SD1 X X SC Y Y SC X Xfansout Y fansout

AZ MO 0 90 4 2 34 11
NY UT 0 3 0 94 70 1
IL NY 20 0 66 1 3 92

MN NY 24 0 57 0 3 96
IA MO 0 10 2 16 98 42
LA NY 10 0 10 1 23 97

Notes: probabilities rounded to the nearest percent. Observations per state: AZ
(127), IL (287), IA (159), LA (141), MN (135), MO (253), NY (319), UT (87).

Table 2 shows results for a few state pairs and three types of relationship. For SD1,

usually one direction has probability near zero, while the other direction may have either

small or large probability. For example, while there is 0% posterior probability for both AZ

SD1 MO and NY SD1 UT, there is only 3% probability that UT SD1 NY, but 90% posterior

probability that MO SD1 AZ.

For dispersion, it is more common to see large posterior probabilities of “fanning out”

3The collection of this PSID data was partly supported by the National Institutes of Health under grant
numbers R01 HD069609 and R01 AG040213, and the National Science Foundation under award numbers
SES 1157698 and 1623684.

4Version 0.3; software developed by the Researchers at the Survey Methodology Program, Survey Re-
search Center, Institute for Social Research, University of Michigan, available at https://www.src.isr.

umich.edu/software/
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than SC. This is partly due to SD1 and SC being mutually exclusive, whereas fanning out

may occur concurrently with SD1 and/or SC or even fanning out in the opposite direction.

For example, with IL and NY, there is 92% posterior probability of IL being less dispersed

in terms of fanning out, but only 66% probability that IL SC NY, partly because there is

20% probability of IL SD1 NY. Also, more assumptions are required to link fanning out

to latent dispersion, so SC provides stronger evidence of a dispersion difference. The 94%

probability of UT SC NY provides very strong evidence that UT is less dispersed. The 96%

probability of some fanning out of NY relative to MN alone is less strong evidence that MN

is less dispersed than NY, but this is bolstered by the small 3% probability of fanning out

in the opposite direction, as well as the 57% probability of MN SC NY.

Table 3: Posterior probabilities (%) of SD1 and SC from PSID 2011.

X SD1 Y ; Y is: X SC Y ; Y is:

X MO KS NE IA IL MO KS NE IA IL

MO — 0 10 10 0 — 7 67* 16 30
KS 34* — 20* 10 3 6 — 24 6 16
NE 3 0 — 6 0 2 0 — 3 0
IA 0 0 6 — 0 2 0 66* — 6
IL 40* 4 18* 43* — 4 14 48 15 —

Notes: probabilities rounded to the nearest percent. Observations per state: IL
(287), IA (159), KS (55), MO (253), NE (70). Asterisk (*) indicates that relation-
ship holds in the sample (i.e., for the survey-weighted empirical distributions).

Table 3 shows posterior probabilities and sample relationships among Missouri (MO) and

some of its midwestern neighbors, Kansas (KS), Nebraska (NE), Iowa (IA), and Illinois (IL).

There are some cases where SD1 holds in the sample but the posterior probability shows

great uncertainty. For example, IL SD1 NE in the sample, but the posterior is only 18%.

There are other cases where SD1 or SC does not hold in the sample, but the possibility

cannot be ruled out statistically. For example, IL SC NE does not hold in the sample but

has a substantial 48% posterior probability.

7 Conclusion

We have provided new ways to compare health inequality in continuous latent distributions

when only ordinal data are available, without making parametric assumptions. We have

characterized implications of various latent and ordinal relationships under different sets of

shape restrictions. We have discussed and compared both frequentist and Bayesian statistical

30



inference on the relevant ordinal relationships.

Future research could consider: additional identification results, under alternative as-

sumptions; multidimensional ordinal variables as in Yalonetzky (2013); whether any prior

lets the Bayesian posterior probabilities be interpreted as p-values; stochastic thresholds;

and further extension to conditional distributions and structural models like ordered choice.
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A Proofs

A.1 Proof of Lemma 1

Proof. As a constructive proof, we solve for the crossing point m. Since F ∗X(r) = F ∗((r −
µX)/σX) and F ∗Y (r) = F ∗((r − µY )/σY ), the crossing point m that solves F ∗X(m) = F ∗Y (m)

satisfies

(m− µX)/σX = (m− µY )/σY . (23)

Solving for m yields m = (σY µX − σXµY )/(σY − σX). If σX = σY , then the denominator is

zero and m does not exist. Otherwise (when σX 6= σY ), the formula provides a unique value.

To verify that m is a crossing point, let σX < σY (wlog). For any r > m,

r − µ
σ

=
m− µ
σ

+
r −m
σ

,

so

r − µX
σX

=

apply (23)︷ ︸︸ ︷
m− µX
σX

+
r −m
σX

=
m− µY
σY

+

apply σX<σY︷ ︸︸ ︷
r −m
σX

>
m− µY
σY

+
r −m
σY

=
r − µY
σY

.

Since F ∗(·) is strictly increasing, (r − µX)/σX > (r − µY )/σY implies F ∗X(r) > F ∗Y (r).

Thus, F ∗X(r) > F ∗Y (r) for all r > m. Similarly, F ∗X(r) < F ∗Y (r) for all r < m since then

(r −m)/σX < (r −m)/σY .

A.2 Proof of Theorem 2

Proof. For Theorem 2(i): for each j = 1, . . . , J ,

FX(j) = F ∗X(γj) by A2

≤ F ∗Y (γj) since X∗ SD1 Y
∗

= FY (j) since ∆γ = 0,

i.e., FX(j) ≤ FY (j), meaning X SD1 Y .

For Theorem 2(ii): a counterexample suffices. Let X∗ ∼ N(0, 1) and Y ∗ ∼ N(−1, 1), so

X∗ SD1 Y
∗. Let γ1 = 0 and ∆γ = −2. Let Φ(·) be the standard normal CDF. Then, using
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A2, FX(1) = F ∗X(γ1) = Φ(0), and FY (1) = F ∗Y (γ1 + ∆γ) = Φ(−1), so FY (1) < FX(1) and

thus X does not SD1 Y (which would require FX(1) ≤ FY (1)).

For Theorem 2(iii): with A3 and σX = σY , then let σX = σY = 1 wlog (by rescaling F ∗(·)
if necessary). Similarly, let µX = 0 wlog (by shifting F ∗(·)), so we have a pure location shift

(Definition 6). For any r ∈ R, F ∗X(r) = F ∗(r) and F ∗Y (r) = F ∗(r − µY ), so F ∗X(r) ≤ F ∗Y (r)

iff µY ≤ 0 since F ∗(·) is a non-decreasing function. That is, X∗ SD1 Y
∗ iff µY ≤ 0. Thus,

FX(j) ≤ FY (j) is equivalent to F ∗X(γj) ≤ F ∗Y (γj), implying µY ≤ 0 and thus X∗ SD1 Y
∗.

For Theorem 2(iv): a counterexample suffices. Let X∗ ∼ N(0, 1) and Y ∗ ∼ N(µY , σ
2
Y ),

satisfying A3–A5. If σY 6= 1, then F ∗X(·) and F ∗Y (·) have a single crossing (Definition 5) at

crossing point m ∈ R. If m < γ1 and σY < 1, then F ∗X(γj) < F ∗Y (γj) for j = 1, . . . , J − 1, so

X SD1 Y , even though X∗ does not SD1 Y ∗ since F ∗X(m− ε) > F ∗Y (m− ε) for all ε > 0.

For Theorem 2(v): consider r ∈ [γj, γj+1]. Since CDFs are non-decreasing, F ∗Y (r) ≥
F ∗Y (γj) = FY (j), and F ∗X(r) ≤ F ∗X(γj+1) = FX(j + 1). Thus, if FX(j + 1) ≤ FY (j), then

F ∗X(r) ≤ F ∗X(γj+1) = FX(j + 1) ≤ FY (j) = F ∗Y (γj) ≤ F ∗Y (r).

This holds for j = 1, . . . , J − 2, so F ∗X(r) ≤ F ∗Y (r) for all r ∈ [γ1, γJ−1], i.e., restricted SD1.

For Theorem 2(vi): given A3, from Lemma 1, there is at most one crossing point m of the

latent CDFs. (Let m =∞ if no crossing point.) If FX(j) ≤ FY (j) for each j = 1, . . . , J − 1,

then F ∗X(γj) ≤ F ∗Y (γj) for each j, so the corresponding γj must all be on the same side of the

crossing point m. Thus, regardless of whether they are all above or below m, F ∗X(r) ≤ F ∗Y (r)

for all r ∈ [γ1, γJ−1], which is the definition of restricted latent SD1.

A.3 Proof of Theorem 3

Proof. For Theorem 3(i): first, we show ∆γ 6= 0 does not affect IQRs. Using thresholds

γj + ∆γ for Y ∗ is equivalent to using thresholds γj for Y ∗ − ∆γ. Since ∆γ is a constant,

the quantiles of Y ∗ −∆γ are equal to the quantiles of Y ∗ minus ∆γ (by equivariance of the

quantile function), so the ∆γ cancels out when taking differences of quantiles: writing Qτ (·)
as the τ -quantile operator (analogous to the expectation operator E(·)), so Qτ (W ) is the

τ -quantile of random variable W ,

Qτ2(Y
∗ −∆γ)−Qτ1(Y

∗ −∆γ) = [Qτ2(Y
∗)−∆γ]− [Qτ1(Y

∗)−∆γ] = Qτ2(Y
∗)−Qτ1(Y

∗).

Thus, we proceed as if ∆γ = 0, which can always be accomplished by a location shift of Y ∗

that does not affect IQRs.

Second, for any τ1 = FX(j) = F ∗X(γj) for j ≤ m, we know FX(j) < FY (j), so τ1 =

F ∗X(γj) < F ∗Y (γj). By continuity and the assumption of strictly increasing latent CDFs,
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this implies Q∗Y (τ1) < γj, so Q∗Y (τ1) < Q∗X(τ1). Similarly, if τ1 = FY (j) for j ≤ m, then

τ1 = F ∗Y (γj) > F ∗X(γj) and Q∗X(τ1) > γj = Q∗Y (τ1). Similarly again, if τ1 is strictly between

FX(j) and FY (j) for j ≤ m, then Q∗Y (τ1) < γj and Q∗X(τ1) > γj, so again Q∗Y (τ1) < Q∗X(τ1).

Altogether, for all τ1 ∈ T1, Q∗Y (τ1) < Q∗X(τ1). Similarly, for all τ2 ∈ T2, Q∗Y (τ2) > Q∗X(τ2).

For example, if τ2 ∈ (FY (j), FX(j)) for j > m, then Q∗X(τ2) < γj and Q∗Y (τ2) > γj, so

Q∗Y (τ2) > Q∗X(τ2).

Third, combining the above results, for any τ1 ∈ T1 and τ2 ∈ T2,

Q∗X(τ2)−Q∗X(τ1) < Q∗Y (τ2)−Q∗X(τ1) < Q∗Y (τ2)−Q∗Y (τ1).

For Theorem 3(ii): from Theorem 3(i), at least one IQR is strictly smaller for X∗ than

Y ∗. This may be extrapolated to the whole distribution because given A3, the latent distri-

butions’ IQRs are either all identical (when σX = σY ), all smaller for X∗ (when σX < σY ), or

all larger for X∗ (when σX > σY ). This is seen by the following. Since IQRs are unaffected

by the locations µX and µY of the latent distributions, let µX = µY = 0 for simplicity. Since

the latent CDFs are assumed strictly increasing, the latent quantile functions are simply

inverse CDFs, so for any τ ∈ (0, 1),

τ = F ∗Y (Q∗Y (τ2)) = F ∗(Q∗Y (τ)/σY ) =⇒ (F ∗)−1(τ) = Q∗Y (τ)/σY =⇒ σYQ
∗(τ) = Q∗Y (τ),

and similarly Q∗X(τ) = σXQ
∗(τ). Thus, for any 0 < τ1 < τ2 < 1,

Q∗X(τ2)−Q∗X(τ1) = σXQ
∗(τ2)− σXQ∗(τ1) = σX [Q∗(τ2)−Q∗(τ1)],

Q∗Y (τ2)−Q∗Y (τ1) = σYQ
∗(τ2)− σYQ∗(τ1) = σY [Q∗(τ2)−Q∗(τ1)],

so all IQRs are strictly smaller for X∗ iff σX < σY , strictly larger for X∗ iff σX > σY , and

identical iff σX = σY . Thus, altogether, the existence of even a single strictly smaller IQR

of X∗ implies that σX < σY and thus all other IQRs are smaller, too.

For Theorem 3(iii): from Theorem 3(ii), the ordinal CDF single crossing implies σX < σY .

From Definition 4, latent SD2 requires
∫ u
−∞[F ∗X(r) − F ∗Y (r)] dr ≤ 0 for all u ∈ R. Since

F ∗X(r) − F ∗Y (r) ≥ 0 for all r ≥ m, where m is the latent CDF crossing point, the integral

is maximized at r = ∞, so it suffices to check
∫∞
−∞[F ∗X(r) − F ∗Y (r)] dr ≤ 0. Since F ∗(·) is

assumed symmetric with median zero, then F ∗(δ) + F ∗(−δ) = 1 and F ∗(δ) = 1 − F ∗(−δ).
If µX = µY ≡ µ, then with a change of variables to s = r − µ (so ds = dr),∫ ∞

−∞
[F ∗X(r)− F ∗Y (r)] dr

=

∫ ∞
−∞

[F ∗((r − µ)/σX)− F ∗((r − µ)/σY )] dr

36



=

∫ ∞
−∞

[F ∗(s/σX)− F ∗(s/σY )] ds

=

∫ 0

−∞
[F ∗(s/σX)− F ∗(s/σY )] ds+

∫ ∞
0

[F ∗(s/σX)− F ∗(s/σY )] ds

=

∫ 0

−∞
[F ∗(s/σX)− F ∗(s/σY )] ds+

∫ ∞
0

{1− F ∗(−s/σX)− [1− F ∗(−s/σY )]} ds

=

∫ 0

−∞
[F ∗(s/σX)− F ∗(s/σY )] ds−

∫ ∞
0

[F ∗(−s/σX)− F ∗(−s/σY )] ds = 0.

If we increase µX to some µX > µY , then F ∗X(r) decreases for all r since (r − µX)/σX

decreases, so the integral becomes negative; latent SD2 holds. Similarly, if we decrease µX

to some µX < µY , then F ∗X(r) increases everywhere and the integral becomes positive; latent

SD2 does not hold. That is: in the symmetric location–scale model, if σX < σY , then SD2

holds iff µX ≥ µY .

If the median of X is strictly above the median of Y , then there exists k such that

FY (k) ≥ 1/2 but FX(k) < 1/2. Given ∆γ = 0, this implies F ∗Y (γk) ≥ 1/2 and F ∗X(γk) < 1/2,

so the median of Y ∗ is weakly below γk while the median of X∗ is strictly above γk, i.e.,

µX > µY . Altogether, the ordinal CDF single crossing is sufficient for σX < σY , and the

strictly larger ordinal median is sufficient for µX > µY , which together are sufficient for

X∗ SD2 Y
∗.

IfX and Y have the same median category k, then the latent medians are only bounded by

γk−1 and γk, so it is possible to have µY > µX . Then, neither X∗ SD2 Y
∗ nor Y ∗ SD2 X

∗.

A.4 Proof of Theorem 4

Proof. For Theorem 4(i): as in the proof of Theorem 3(i), IQRs are unaffected by pure

location shifts, so we let ∆γ = 0 for simplicity of notation. First, consider when FY (j+ 1) >

FX(j); let τ2 = FY (j+ 1) and τ1 = FX(j). We show that the smallest possible τ2− τ1 IQR of

Y ∗ (consistent with the ordinal distribution and assumptions) is still larger than the largest

possible τ2− τ1 IQR of X∗. Since we know Q∗Y (τ2) = γj+1 (from A2), minimizing the τ2− τ1
IQR for Y ∗ is equivalent to maximizing Q∗Y (τ1). From the combination of A4 and A5, F ∗Y (·)
is concave after the median Q∗Y (1/2); since FY (j) ≥ 1/2, F ∗Y (·) is concave on (at least) the

interval [γj, γj+1]. Given this concavity constraint, Q∗Y (τ1) is maximized if F ∗Y (·) is a straight

line over the interval [γj, γj+1], i.e., having as little concavity as possible. Given this linearity,

the (smallest possible) τ2 − τ1 IQR of Y ∗ is

Q∗Y (τ2)−Q∗Y (τ1) = (γj+1 − γj)
FY (j + 1)− FX(j)

FY (j + 1)− FY (j)
. (24)
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Equation (24) can be viewed as linear interpolation, taking the overall interval length γj+1−γj
and multiplying by the proportion determined by the probability ratio, or it can be viewed as

taking the (constant) quantile function slope (γj+1−γj)/[FY (j+1)−FY (j)] and multiplying

by the quantile index difference FY (j + 1) − FX(j). For X∗, we know Q∗X(τ1) = γj, so the

IQR is maximized by maximizing Q∗X(τ2). Given the concavity constraint, this is achieved

when F ∗X(·) is a straight line over the interval, in which case the (largest possible) τ2 − τ1
IQR of X∗ is

Q∗X(τ2)−Q∗X(τ1) = (γj+1 − γj)
FY (j + 1)− FX(j)

FX(j + 1)− FX(j)
. (25)

In (24) and (25), both IQRs are expressed as a proportion of the length of the interval,

γj+1 − γj. The difference is (only) in the denominator of the proportion. Thus, (24) is

larger than (25) iff FY (j + 1)−FY (j) < FX(j + 1)−FX(j), which is the condition stated in

Theorem 4(i).

Second, consider when FY (j + 1) < FX(j); now let τ1 = FY (j + 1) and τ2 = FX(j), so

interest is again in the τ2− τ1 IQR. The approach is similar above: given concavity, straight-

line CDFs minimize the Y ∗ IQR and maximize the X∗ IQR, and then the linear interpolation

(now linear extrapolation) formula provides the IQRs. For Y ∗, now Q∗Y (τ1) = γj+1, so the

IQR is minimized by minimizing Q∗Y (τ2), which occurs when F ∗Y (·) is linear. Thus, the

(smallest possible) τ2 − τ1 IQR of Y ∗ is

Q∗Y (τ2)−Q∗Y (τ1) = (γj+1 − γj)
FX(j)− FY (j + 1)

FY (j + 1)− FY (j)
. (26)

For X∗, now Q∗X(τ2) = γj, so the IQR is maximized by minimizing Q∗X(τ1), which occurs

when F ∗X(·) is linear. (Even though we are extrapolating to the left of γj, we must still be

above the median of X∗ since τ1 ≥ 1/2, so the concavity constraint still holds.) Thus, the

(largest possible) τ2 − τ1 IQR of X∗ is

Q∗X(τ2)−Q∗X(τ1) = (γj+1 − γj)
FX(j)− FY (j + 1)

FX(j + 1)− FX(j)
. (27)

As before, only the denominator is different, so (26) is larger than (27) iff FY (j+1)−FY (j) <

FX(j + 1)− FX(j), which is the condition stated in Theorem 4(i).

For Theorem 4(ii): the proof is symmetric to that of Theorem 4(i). That is, the structure

is identical, but now we have an upper endpoint where before we had a lower endpoint, and we

have a convexity instead of concavity constraint on the latent CDFs, but the IQR difference

is still always minimized when both latent CDFs are straight lines (on the relevant intervals).

For example, when τ2 = FX(j + 1) > FY (j) = τ1, the smallest possible Y ∗ IQR and largest
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possible X∗ IQR are

Q∗Y (τ2)−Q∗Y (τ1) = (γj+1 − γj)
FX(j + 1)− FY (j)

FY (j + 1)− FY (j)
,

Q∗X(τ2)−Q∗X(τ1) = (γj+1 − γj)
FX(j + 1)− FY (j)

FX(j + 1)− FX(j)
.

As before, only the denominator differs, so the criterion simplifies to which denominator is

smaller, as stated in Theorem 4(ii).

For Theorem 4(iii): the proof is the same as that of Theorem 3(ii), which shows how a

single larger IQR implies a larger σ.
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